首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   16篇
  2023年   3篇
  2022年   2篇
  2021年   11篇
  2020年   2篇
  2019年   12篇
  2018年   7篇
  2017年   9篇
  2016年   14篇
  2015年   9篇
  2014年   10篇
  2013年   17篇
  2012年   27篇
  2011年   19篇
  2010年   21篇
  2009年   8篇
  2008年   25篇
  2007年   23篇
  2006年   21篇
  2005年   18篇
  2004年   12篇
  2003年   11篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
排序方式: 共有312条查询结果,搜索用时 15 毫秒
51.
The Photosystem II complex (PSII) is susceptible to inactivation by strong light, and the inactivation caused by strong light is referred to as photoinactivation or photoinhibition. In photosynthetic organisms, photoinactivated PSII is rapidly repaired and the extent of photoinactivation reflects the balance between the light-induced damage (photodamage) to PSII and the repair of PSII. In this study, we examined these two processes separately and quantitatively under stress conditions in the cyanobacterium Synechocystis sp. PCC 6803. The rate of photodamage was proportional to light intensity over a range of light intensities from 0 to 2000 μE m−2 s−1, and this relationship was not affected by environmental factors, such as salt stress, oxidative stress due to H2O2, and low temperature. The rate of repair also depended on light intensity. It was high under weak light and reached a maximum of 0.1 min−1 at 300 μE m−2 s−1. By contrast to the rate of photodamage, the rate of repair was significantly reduced by the above-mentioned environmental factors. Pulse-labeling experiments with radiolabeled methionine revealed that these environmental factors inhibited the synthesis de novo of proteins. Such proteins included the D1 protein which plays an important role in the photodamage-repair cycle. These observations suggest that the repair of PSII under environmental stress might be the critical step that determines the outcome of the photodamage-repair cycle.  相似文献   
52.
Listeria monocytogenes contamination of ready-to-eat foods has been implicated in numerous outbreaks of food-borne listeriosis. However, the health hazards posed by L. monocytogenes detected in foods may vary, and speculations exist that strains actually implicated in illness may constitute only a fraction of those that contaminate foods. In this study, examination of 34 serogroup 4 (putative or confirmed serotype 4b) isolates of L. monocytogenes obtained from various foods and food-processing environments, without known implication in illness, revealed that many of these strains had methylation of cytosines at GATC sites in the genome, rendering their DNA resistant to digestion by the restriction endonuclease Sau3AI. These strains also harbored a gene cassette with putative restriction-modification system genes as well as other, genomically unlinked genetic markers characteristic of the major epidemic-associated lineage of L. monocytogenes (epidemic clone I), implicated in numerous outbreaks in Europe and North America. This may reflect a relatively high fitness of strains with these genetic markers in foods and food-related environments relative to other serotype 4b strains and may partially account for the repeated involvement of such strains in human food-borne listeriosis.  相似文献   
53.
Among leguminous plants, the model legume Lotus japonicus (Regel) Larsen has many biological and genetic advantages. We have developed a genetic linkage map of L. japonicus based on amplified fragment length polymorphism (AFLP), simple sequence repeat polymorphism (SSRP) and derived cleaved amplified polymorphic sequence (dCAPS). The F2 mapping population used was derived from a cross between two L. japonicus accessions Gifu B-129 and Miyakojima MG-20. These parental accessions showed remarkable cytological differences, particularly with respect to size and morphology of chromosomes 1 and 2. Using fluorescence in situ hybridization (FISH) with BAC clones from Gifu B-129 and TAC (Transformation-competent Artificial Chromosome) clones from Miyakojima MG-20, a reciprocal translocation was found to be responsible for the cytological differences between chromosomes 1 and 2. The borders of the translocations were identified by FISH and by alignment toward the L. filicaulis x L. japonicus Gifu B-129 linkage map. The markers from the main translocated region were located on linkage groups 1 and 2 of the two accessions, Gifu B-129 and Miyakojima MG-20, respectively. The framework of the linkage map was constructed based on codominant markers, and then dominant markers were integrated separately in each linkage group of the parents. The resulting linkage groups correspond to the six pairs of chromosomes of L. japonicus and consist of 287 markers with 487.3 cM length in Gifu B-129 and 277 markers with 481.6 cM length in Miyakojima MG-20. The map and marker information is available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  相似文献   
54.
55.
Nature uses a Mn oxide-based catalyst for water oxidation in plants, algae, and cyanobacteria. Mn oxides are among major candidates to be used as water-oxidizing catalysts. Herein, we used two straightforward and promising methods to form Escherichia coli bacteria/Mn oxide compounds. In one of the methods, the bacteria template was intact after the reaction. The catalysts were characterized by X-ray photoelectron spectroscopy, visible spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, diffuse reflectance infrared Fourier transform spectroscopy, Raman spectroscopy, and X-ray diffraction spectrometry. Electrochemical properties of the catalysts were studied, and attributed redox potentials were assigned. The water oxidation of the compounds was examined under electrochemical condition. Linear sweep voltammetry showed that the onsets of water oxidation in our experimental condition for bacteria and Escherichia coli bacteria/Mn oxide were 1.68 and 1.56 V versus the normal hydrogen electrode (NHE), respectively. Thus, the presence of Mn oxide in the catalyst significantly decreased (~?120 mV) the overpotential needed for water oxidation.  相似文献   
56.
Nitrogen-fixing root nodules develop on legumes as a result of an interaction between host plants and soil bacteria collectively referred to as rhizobia. The organogenic process resulting in nodule development is triggered by the bacterial microsymbiont, but genetically controlled by the host plant genome. Using T-DNA insertion as a tool to identify novel plant genes that regulate nodule ontogeny, we have identified two putatively tagged symbiotic loci, Ljsym8 and Ljsym13, in the diploid legume Lotus japonicus. The sym8 mutants are arrested during infection by the bacteria early in the developmental process. The sym13 mutants are arrested in the final stages of infection, and ineffective nodules are formed. These two plant mutant lines were identified in progeny from 1112 primary transformants obtained after Agrobacterium tumefaciens T-DNA-mediated transformation of L. japonicus and subsequent screening for defects in the symbiosis with Mesorhizobium loti. Additional nontagged mutants arrested at different developmental stages were also identified and genetic complementation tests assigned all the mutations to 16 monogenic symbiotic loci segregating recessive mutant alleles. In the screen reported here independent symbiotic loci thus appeared with a frequency of ∼1.5%, suggesting that a relatively large set of genes is required for the symbiotic interaction. Received: 12 May 1998 / Accepted: 24 June 1998  相似文献   
57.
58.
The organization of carbonic anhydrase (CA) system in halo- and alkaliphilic cyanobacterium Rhabdoderma lineare was studied by Western blot analysis and immunocytochemical electron microscopy. The presence of putative extracellular alpha-CA of 60 kDa in the glycocalyx, forming a tight sheath around the cell, and of two intracellular beta-CA is reported. We show for the first time that the beta-CA of 60 kDa is expressed constitutively and associated with polypeptides of photosystem II (beta-CA-PS II). Another soluble beta-CA of 25 kDa was induced in low-bicarbonate medium. Induction of synthesis of the latter beta-CA was accompanied by an increase in the intracellular pool of inorganic carbon, which suggests an important role of this enzyme in the functioning of a CO(2)-concentrating mechanism.  相似文献   
59.
60.
Temperature is one of the main factors controlling the formation, development, and functional performance of the photosynthetic apparatus in all photoautotrophs (green plants, algae, and cyanobacteria) on Earth. The projected climate change scenarios predict increases in air temperature across Earth’s biomes ranging from moderate (3–4?°C) to extreme (6–8?°C) by the year 2100 (IPCC in Climate change 2007: The physical science basis: summery for policymakers, IPCC WG1 Fourth Assessment Report 2007; Climate change 2014: Mitigation of Climate Change, IPCC WG3 Fifth Assessment Report 2014). In some areas, especially of the Northern hemisphere, even more extreme warm seasonal temperatures may occur, which possibly will cause significant negative effects on the development, growth, and yield of important agricultural crops. It is well documented that high temperatures can cause direct damages of the photosynthetic apparatus and photosystem II (PSII) is generally considered to be the primary target of heat-induced inactivation of photosynthesis. However, since photosystem I (PSI) is considered to determine the global amount of enthalpy in living systems (Nelson in Biochim Biophys Acta 1807:856–863, 2011; Photosynth Res 116:145–151, 2013), the effects of elevated temperatures on PSI might be of vital importance for regulating the photosynthetic response of all photoautotrophs in the changing environment. In this review, we summarize the experimental data that demonstrate the critical impact of heat-induced alterations on the structure, composition, and functional performance of PSI and their significant implications on photosynthesis under future climate change scenarios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号