首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   707篇
  免费   29篇
  736篇
  2022年   8篇
  2021年   12篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   9篇
  2016年   15篇
  2015年   15篇
  2014年   31篇
  2013年   34篇
  2012年   49篇
  2011年   56篇
  2010年   37篇
  2009年   28篇
  2008年   27篇
  2007年   30篇
  2006年   29篇
  2005年   24篇
  2004年   32篇
  2003年   32篇
  2002年   24篇
  2001年   9篇
  2000年   8篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   10篇
  1995年   8篇
  1994年   8篇
  1993年   10篇
  1992年   13篇
  1991年   13篇
  1990年   9篇
  1989年   9篇
  1988年   3篇
  1987年   8篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   7篇
  1981年   10篇
  1980年   9篇
  1979年   4篇
  1978年   3篇
  1976年   5篇
  1973年   6篇
  1972年   7篇
  1970年   5篇
  1962年   3篇
排序方式: 共有736条查询结果,搜索用时 17 毫秒
41.
42.
Imaging mass spectrometry (IMS) has developed into a powerful tool allowing label-free detection of numerous biomolecules in situ. In contrast to shotgun proteomics, proteins/peptides can be detected directly from biological tissues and correlated to its morphology leading to a gain of crucial clinical information. However, direct identification of the detected molecules is currently challenging for MALDI–IMS, thereby compelling researchers to use complementary techniques and resource intensive experimental setups. Despite these strategies, sufficient information could not be extracted because of lack of an optimum data combination strategy/software. Here, we introduce a new open-source software ImShot that aims at identifying peptides obtained in MALDI–IMS. This is achieved by combining information from IMS and shotgun proteomics (LC–MS) measurements of serial sections of the same tissue. The software takes advantage of a two-group comparison to determine the search space of IMS masses after deisotoping the corresponding spectra. Ambiguity in annotations of IMS peptides is eliminated by introduction of a novel scoring system that identifies the most likely parent protein of a detected peptide in the corresponding IMS dataset. Thanks to its modular structure, the software can also handle LC–MS data separately and display interactive enrichment plots and enriched Gene Ontology terms or cellular pathways. The software has been built as a desktop application with a conveniently designed graphic user interface to provide users with a seamless experience in data analysis. ImShot can run on all the three major desktop operating systems and is freely available under Massachusetts Institute of Technology license.  相似文献   
43.
Colonic drug delivery is intended not only for local treatment in inflammatory bowel disease (IBD) but also for systemic delivery of therapeutics. Intestinal myeloperoxidase (MPO) determination could be used to estimate the average level of inflammation in colon as well as to determine the efficacy of drugs to be used in the treatment of inflammatory bowel diseases or study the specificity of dosage forms to be used for colonic targeting of anti-inflammatory drugs. Colonic prodrug sulfasalazine (SASP) gets metabolized to give 5-aminosalicylic acid (5-ASA), which is the active portion of SASP. However, when given orally, 5-ASA is absorbed in upper part of gastrointestinal tract (GIT) and not made available in colon. In the present study, colon-targeted delivery of 5-ASA was achieved by formulating tablets with two natural polymers namely guar gum and pectin using compression coating method. Colonic specificity of 5-ASA tablets (prepared using guar gum and pectin as polymers) was evaluated in vitro using simulated fluids mimicking in vivo environment as well as in vivo method using chemically (2,4,6-trinitrobenzenesulfonic acid and acetic acid)-induced colitis rat model. Both colon-specific formulations of 5-ASA (guar gum and pectin) were observed to be more effective in reducing inflammation in chemically induced colitis rat models when compared to colon-specific prodrug sulfasalazine as well as conventional 5-ASA administered orally.KEY WORDS: colitis, colon-specific drug delivery, myeloperoxidase  相似文献   
44.
45.
The genome sequence of the cyanobacterium Synechocystis sp. PCC6803 revealed four Open reading frame (ORF) encoding putative inositol monophosphatase or inositol monophosphatase-like proteins. One of the ORFs, sll1383, is ∼870 base pair long and has been assigned as a probable myo-inositol 1 (or 4) monophosphatase (IMPase; EC 3.1.3.25). IMPase is the second enzyme in the inositol biosynthesis pathway and catalyses the conversion of L-myo-inositol 1-phosphate to free myo-inositol. The present work describes the functional assignment of ORF sll1383 as myo-inositol 1-phosphate phosphatase (IMPase) through molecular cloning, bacterial overexpression, purification and biochemical characterization of the gene product. Affinity (K m) of the recombinant protein for the substrate DL-myo-inositol 1-phosphate was found to be much higher (0.0034 ± 0.0003 mM) compared to IMPase(s) from other sources but in comparison V max (∼0.033 μmol Pi/min/mg protein) was low. Li+ was found to be an inhibitor (IC50 6.0 mM) of this enzyme, other monovalent metal ions (e.g. Na+, K+ NH4+) having no significant effect on the enzyme activity. Like other IMPase(s), the activity of this enzyme was found to be totally Mg2+ dependent, which can be substituted partially by Mn2+. However, unlike other IMPase(s), the enzyme is optimally active at ∼42°C. To the best of our knowledge, sll1383 encoded IMPase has the highest substrate affinity and specificity amongst the known examples from other prokaryotic sources. A possible application of this recombinant protein in the enzymatic coupled assay of L-myo-inositol 1-phosphate synthase (MIPS) is discussed.  相似文献   
46.
Because cobalt administration is known to elicit erythropoietin response, it is a reasonable hypothesis that cobalt would also stimulate the O2-sensing process in the peripheral chemoreceptors. We tested this hypothesis by measuring the effects of cobalt chloride on carotid chemosensory fibers in pentobarbital-anesthetized cats that were paralyzed and artificially ventilated. Responses of carotid chemoreceptor afferents to graded doses of cobalt given by intra-arterial injections (0.08-2.10 mumols) were measured at constant blood gases. Responses of the same chemoreceptor afferents to hypoxia, before and after a saturation dose of cobalt, were measured. In two experiments carotid body tissue PO2 was also simultaneously measured. The chemosensory fibers showed prolonged excitation after a brief period of inhibition subsequent to cobalt administration. The stimulatory effect showed a dose-dependent saturation response. Cobalt augmented rather than blocked carotid chemoreceptor response to hypoxia. The effect of cobalt was not mediated by tissue PO2. These results are consistent with the hypothesis that cobalt stimulates the O2-sensing mechanism, although a direct effect of cobalt on the excitability of the chemosensory terminal remains a possibility.  相似文献   
47.
Basu S  Ghosh S  Ganguly NK  Majumdar S 《Biochimie》2004,86(9-10):657-666
The pathogenesis of enteroaggregative Escherichia coli, a major contributor to paediatric diarrhoea, is still not clearly understood. A complex carbohydrate specific lectin was identified from the culture supernatant of an enteroaggregative E. coli strain. The lectin was purified to 660-fold by a combination of sequential saturated ammonium sulphate precipitation and gel filtration chromatography in the FPLC system. The homogeneity of the purified lectin was established by analytical isoelectrofocusing [pI 6.75]. Hemagglutination of rabbit erythrocytes by the purified lectin was best inhibited by fetuin. The N-terminal sequence of the 41.7 kDa subunit showed homology to the outermembrane porins and the 23.4 kDa subunit showed homology to a hypothetical protein of Yersinia pestis and secreted Hcp protein. This protein could induce extensive morphological changes in HEp-2 cells and significant amount of fluid accumulation in rabbit ileal loop. GM1 showed maximum binding to the lectin among all other gangliosides. This purified protein showed cross-reactivity to the binding subunit of cholera toxin in western immunoblot. The presence of this toxin in some of the clinical isolates of enteroaggregative E. coli was also observed. The structural and functional characteristics of the toxin revealed that it is a novel virulence determinant of aggregative E. coli.  相似文献   
48.
Trinucleotide repeats (TNRs) are sequences whose expansion causes several genetic diseases and chromosome breakage. We report a novel finding that expanded CAG repeats activate the DNA damage response. Mutations in yeast MEC1, RAD9, or RAD53 genes result in increased rates of fragility of a CAG repeat tract while single or double deletions of RAD17 or RAD24 have only a modest effect on TNR fragility, indicating that signaling down the Rad9 pathway and not the Rad17-Rad24 pathway plays a major role in sensing and repairing CAG-tract breaks. Deletion of CHK1 had no effect on CAG fragility, suggesting that a Chk1-mediated G2 arrest is not required for TNR repair. Absence of Mec1, Ddc2, Rad17, Rad24, or Rad53 also gives rise to increased frequency of CAG repeat contractions, indicating that components of the checkpoint machinery play an active role in the maintenance of both chromosomal integrity and repeat stability at expanded CAG sequences.  相似文献   
49.
Initiation and synthesis of RNA primers in the lagging strand of the replication fork in Escherichia coli requires the replicative DnaB helicase and the DNA primase, the DnaG gene product. In addition, the physical interaction between these two replication enzymes appears to play a role in the initiation of chromosomal DNA replication. In vitro, DnaB helicase stimulates primase to synthesize primers on single-stranded (ss) oligonucleotide templates. Earlier studies hypothesized that multiple primase molecules interact with each DnaB hexamer and single-stranded DNA. We have examined this hypothesis and determined the exact stoichiometry of primase to DnaB hexamer. We have also demonstrated that ssDNA binding activity of the DnaB helicase is necessary for directing the primase to the initiator trinucleotide and synthesis of 11-20-nucleotide long primers. Although, association of these two enzymes determines the extent and rate of synthesis of the RNA primers in vitro, direct evidence of the formation of primase-DnaB complex has remained elusive in E. coli due to the transient nature of their interaction. Therefore, we stabilized this complex using a chemical cross-linker and carried out a stoichiometric analysis of this complex by gel filtration. This allowed us to demonstrate that the primase-helicase complex of E. coli is comprised of three molecules of primase bound to one DnaB hexamer. Fluorescence anisotropy studies of the interaction of DnaB with primase, labeled with the fluorescent probe Ru(bipy)3, and Scatchard analysis further supported this conclusion. The addition of DnaC protein, leading to the formation of the DnaB-DnaC complex, to the simple priming system resulted in the synthesis of shorter primers. Therefore, interactions of the DnaB-primase complex with other replication factors might be critical for determining the physiological length of the RNA primers in vivo and the overall kinetics of primer synthesis.  相似文献   
50.
The urea induced equilibrium denaturation behavior of glutaminyl-tRNA synthetase from Escherichia coli (GlnRS) in 0.25 m potassium l-glutamate, a naturally occurring osmolyte in E. coli, has been studied. Both the native to molten globule and molten globule to unfolded state transitions are shifted significantly toward higher urea concentrations in the presence of l-glutamate, suggesting that l-glutamate has the ability to counteract the denaturing effect of urea. d-Glutamate has a similar effect on the equilibrium denaturation of glutaminyl-tRNA synthetase, indicating that the effect of l-glutamate may not be due to substrate-like binding to the native state. The activation energy of unfolding is not significantly affected in the presence of 0.25 m potassium l-glutamate, indicating that the native state is not preferentially stabilized by the osmolyte. Dramatic increase of coefficient of urea concentration dependence (m) values of both the transitions in the presence of glutamate suggests destabilization and increased solvent exposure of the denatured states. Four other osmolytes, sorbitol, trimethylamine oxide, inositol, and triethylene glycol, show either a modest effect or no effect on native to molten globule transition of glutaminyl-tRNA synthetase. However, glycine betaine significantly shifts the transition to higher urea concentrations. The effect of these osmolytes on other proteins is mixed. For example, glycine betaine counteracts urea denaturation of tubulin but promotes denaturation of S228N lambda-repressor and carbonic anhydrase. Osmolyte counteraction of urea denaturation depends on osmolyte-protein pair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号