首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2225篇
  免费   132篇
  国内免费   1篇
  2023年   11篇
  2022年   9篇
  2021年   48篇
  2020年   17篇
  2019年   32篇
  2018年   56篇
  2017年   52篇
  2016年   77篇
  2015年   120篇
  2014年   111篇
  2013年   162篇
  2012年   207篇
  2011年   148篇
  2010年   120篇
  2009年   79篇
  2008年   119篇
  2007年   118篇
  2006年   105篇
  2005年   100篇
  2004年   68篇
  2003年   65篇
  2002年   64篇
  2001年   58篇
  2000年   58篇
  1999年   38篇
  1998年   16篇
  1997年   13篇
  1996年   7篇
  1995年   9篇
  1994年   9篇
  1993年   11篇
  1992年   19篇
  1991年   22篇
  1990年   19篇
  1989年   15篇
  1988年   16篇
  1987年   16篇
  1986年   7篇
  1985年   16篇
  1984年   9篇
  1983年   8篇
  1982年   7篇
  1981年   6篇
  1979年   10篇
  1978年   9篇
  1977年   7篇
  1976年   8篇
  1975年   7篇
  1973年   7篇
  1967年   4篇
排序方式: 共有2358条查询结果,搜索用时 187 毫秒
131.
A relatively novel biocide, ortho-phthalaldehyde (OPA), was tested to control biofilms formed by Pseudomonas fluorescens on stainless steel surfaces. The toxic action of OPA was assessed in terms of inactivation and removal of the biofilm by means of, respectively, the determination of the respiratory activity and the variation in the dry weight of the biofilms. For comparison, the activity of OPA against suspended bacteria was also evaluated. The results showed that higher concentrations of OPA and longer exposure times are needed to inactivate P. fluorescens biofilms than planktonic populations, thus denoting that sessile bacteria have a reduced susceptibility to OPA. This appears to be associated with the reaction with the proteins of the matrix, as demonstrated by the reduction of the antimicrobial action of OPA in the presence of a protein (bovine serum albumin). The application of OPA appeared to cause little effect in the removal of biofilms from the metal slides since the mass of biofilm that remained on the surfaces, after biocide treatment, was within the same range as those observed in the control tests. These results suggest that, with OPA application, biofilms can be inactivated but stay attached to the surfaces, decreasing thereby the success of the chemical treatment.  相似文献   
132.
The very first application of supercritical fluid extraction (SFE) on enantioseparation of alcohols is discussed. Resolution of three chiral alcohols (trans-2-chloro-cyclohexanol, trans-2-bromo-cyclohexanol, and trans-2-iodo-cyclohexanol) were performed by partial complexation with (-)-O,O'-dibenzoyl-(2R,3R)-tartaric acid monohydrate (DBTA). DBTA formed diastereomeric complexes with all S,S-enantiomers stable enough to extract the unreacted alcohols with supercritical carbon dioxide. Resolution efficiency increased with the size of halogen substituents, and by the proper selection of molar ratio, pure (-)-R,R-trans-2-iodo-cyclohexanol (ee > 99%, yield: 39%) or (+)-S,S-trans-2-iodo-cyclohexanol (ee = 98%, yield: 8%) were prepared in one process step. Achieved resolution efficiency values were much higher in all resolution procedures than in any other known enantioseparation of these racemic compounds. The developed method offers an environmentally friendly, efficient alternative of currently applied resolution processes, also on a preparative scale.  相似文献   
133.
134.
Deacetoxycephalosporin C synthase (DAOCS) is a non-heme iron-binding and alpha-ketoglutarate dependent enzyme involved in catalyzing the biosynthesis of cephalosporins and cephamycins, antibiotics more potent than penicillins. In the crystal structure complex of Streptomyces clavuligerus DAOCS (scDAOCS), it was proposed that histidine-183, aspartate-185, and histidine-243 are putative iron-binding ligands. However, coordinates proposed for crystal structures of proteins may not definitely comply with catalysis. Hence, site-directed mutagenesis was done to replace each of these amino acid residues with leucine. The constructed expression vectors bearing the mutations were found to express the respective scDAOCS mutant enzymes at high levels in Escherichia coli BL21(DE3). Through enzymatic assays, it was shown that while the wildtype enzyme could convert penicillin to a more active cephalosporin, the substitution of the three proposed iron-binding sites of scDAOCS completely abolished the same activity in the respective mutant enzymes. Thus, these results clearly indicate that histidine-183, aspartate-185, and histidine-243 of scDAOCS are essential for the ring expansion activity.  相似文献   
135.
Simčič  Tatjana  Brancelj  Anton 《Hydrobiologia》2000,437(1-3):157-163
Electron transport system (ETS) activity was measured in Chirocephalus croaticus from the intermittent lake, Petelinjsko Jezero. The ETS activities were measured at 5, 10, 15, 20, and 25 °C, and were studied separately in juveniles, females and males. Juveniles had significantly higher activity than adults at a standard temperature of 20 °C. The mass-specific ETS activity decreased with increasing size of the animals; the value b was 0.787. Respiration rates (R) were determined at 20 °C and the ratio ETS/R (±standard deviation) for C. croaticus was 1.43±0.46 (n=38). ETS activity increased with temperature. Females had higher Q10 than males in higher temperature range (t-test; t=2.50; d.f.=8; p<0.05). Activation energy Ea was higher for females than males (t-test; t=2.35; d.f.=8; p<0.05). Females exhibited lower ETS activity than males over the lower temperature range, but their ETS could function more efficient at higher temperature.  相似文献   
136.
Isopenicillin N synthase (IPNS) is a key enzyme responsible for the catalytic conversion of delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N in the beta-lactam antibiotic biosynthetic pathway. The Aspergillus nidulans IPNS crystal structure implicated amino acid residues tyrosine-189, arginine-279, and serine-281 in the substrate-binding of the valine carboxylate portion of ACV via hydrogen bonds. In previous reports, we provided mutational evidence for the critical involvement of the corresponding arginine-281 and serine-283, which constitute a conserved R-X-S motif, for the catalysis of Cephalosporium acremonium IPNS (cIPNS). In this study, we report the site-directed mutagenesis of the corresponding tyrosine-191 in cIPNS to four amino acids from different amino acid groups, namely, phenylalanine, serine, histidine, and aspartate. The mutants Y191F, Y191H, and Y191R respectively yielded specific activities at levels of 3, 8.6, and 18.8% relative to the wild-type when enzyme bioassays were performed using purified protein fractions. These results were surprising, as previous mutational analyses involving arginine-281 and serine-283 resulted in non-measurable specific activities, thus suggesting that tyrosine-191 is important but not critical for the activity of cIPNS due to its involvement in ACV binding. Hence, it is likely that tyrosine-191 is the least critical of the three residues involved in binding the ACV valine carboxylate moiety.  相似文献   
137.
Recent evidence suggests that the pathophysiology of neurodegenerative and inflammatory neurological diseases has a neuroimmunological component involving complement, an innate humoral immune defense system. The present study demonstrates the effects of experimentally induced global ischemia on the biosynthesis of C1q, the recognition subcomponent of the classical complement activation pathway, in the CNS. Using semiquantitative in situ hybridization, immunohistochemistry, and confocal laser scanning microscopy, a dramatic and widespread increase of C1q biosynthesis in rat brain microglia (but not in astrocytes or neurons) within 24 h after the ischemic insult was observed. A marked increase of C1q functional activity in cerebrospinal fluid taken 1, 24, and 72 h after the ischemic insult was determined by C1q-dependent hemolytic assay. In the light of the well-established role of complement and complement activation products in the initiation and maintenance of inflammation, the ischemia-induced increase of cerebral C1q biosynthesis and of C1q functional activity in the cerebrospinal fluid implies that the proinflammatory activities of locally produced complement are likely to contribute to the pathophysiology of cerebral ischemia. Pharmacological modulation of complement activation in the brain may be a therapeutic target in the treatment of stroke.  相似文献   
138.
Insect juvenile hormone (JH) has been related to modulation of vitellogenin (Vg) synthesis, a protein produced by fat body cells, secreted in haemolymph and sequestered by developing oocytes. A stimulatory JH action has been described for the majority of species studied thus far. In some insects, however, Vg synthesis has been inhibited or unaffected by JH. The aim of this study was to re-examine the action of JH on Vg synthesis in Apis mellifera workers, since contrasting effects of this hormone were described. Newly emerged worker bees were treated with different doses of pyriproxyfen (PPN), a potent JH analogue. Vg and total protein were quantified in haemolymph samples of newly emerged up to 6-day-old worker bees. Protein synthesis activity of fat body cultured in vitro and ultrastructure of fat body cells were also examined. High doses (1.25, 2.5, 5 and 10 &mgr;g) of PPN inhibited the onset and accumulation of Vg in the haemolymph of young worker bees in a dose-dependent fashion. This inhibition was not a result of fat body cell degeneration or death, as illustrated by fat body cells ultrastructure analysis, but by impairing Vg synthesis, as demonstrated by in vitro culture of fat body cells. Low doses (0.001, 0.01 and 0.1 &mgr;g) neither affected the normal synthesis and secretion of Vg into the haemolymph nor caused an early onset of Vg in treated bees (which could be interpreted as a JH-activating effect), as shown by Vg quantification at 24-h intervals. The results suggest that a low JH titre in honey bee workers permits the onset and accumulation of Vg in haemolymph, whereas high JH levels turn off Vg synthesis.  相似文献   
139.
The aim of this study was to determine the effects of N-supply and defoliation on rhizodeposition from Festuca rubra, in the context of whole-plant C- partitioning and root morphology. Plants were grown for 36 d in axenic sand microcosms continuously percolated with nutrient solutions of either high or low N concentration (2 mM or 0.01 mM NH(4)NO(3), respectively). The effects of partial defoliation at weekly intervals were determined at high and low N. At low N, dry matter accumulation in roots and shoots was reduced significantly (P<0.001), with proportionately increased partitioning to roots, in comparison with the high N treatment. Root morphology was also affected by N-treatment; at low N, lower biomass production was offset by increased specific root length (P<0.001), reducing the magnitude of the significant (P=0.002) increase in total root length at high N. Cumulative release of organic C from roots of F: rubra over the experimental period was not altered significantly by N-treatment. However, as a proportion of net C-assimilation, rhizodeposition was significantly (P<0.001) greater at low N than at high N. Defoliation transiently (3-5 d) increased the release of soluble organic compounds from roots at each N-supply rate, and increased significantly (P<0.001) cumulative rhizodeposition over the experimental period. These effects of N-supply and defoliation on rhizodeposition are of importance in understanding interactions between plant and microbial productivity in grazed grasslands, and in interpretation of concurrent effects on microbially driven nutrient cycling processes in these systems.  相似文献   
140.
Mannan-binding lectin (MBL) plays a pivotal role in innate immunity by activating complement after binding carbohydrate moieties on pathogenic bacteria and viruses. Structural similarities shared by MBL and C1 complexes and by the MBL- and C1q-associated serine proteases, MBL-associated serine protease (MASP)-1 and MASP-2, and C1r and C1s, respectively, have led to the expectation that the pathways of complement activation by MBL and C1 complexes are likely to be very similar. We have expressed rMASP-2 and show that, whereas C1 complex autoactivation proceeds via a two-step mechanism requiring proteolytic activation of both C1r and C1s, reconstitution with MASP-2 alone is sufficient for complement activation by MBL. The results suggest that the catalytic activities of MASP-2 split between the two proteases of the C1 complex during the course of vertebrate complement evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号