首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
  国内免费   1篇
  2021年   1篇
  2020年   2篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   6篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1992年   1篇
  1987年   1篇
  1981年   1篇
排序方式: 共有44条查询结果,搜索用时 140 毫秒
11.
Trade in freshwater ornamental fish in South Africa is currently regulated by a ‘blacklist’ to prevent potentially invasive taxa from establishing in the country. Because its effective implementation requires accurate identification, the aim of the present study was to test whether DNA barcoding is a useful tool to identify freshwater fishes in the South African pet trade. A total of 351 aquarium fish specimens, representing 185 traded taxa, were sequenced for the mitochondrial COI barcoding marker in 2011 and 2012. Lake Malawi cichlids were treated as a single group due to a lack of resolution in their COI marker, resulting in a data set of 137 successfully sequenced taxa. The Barcode Of Life Database (BOLD) and GenBank were used for taxonomic assignment comparisons. The genetic identification matched the scientific name inferred from the trade name for 60 taxa (43.8%) using BOLD, and for 67 taxa (48.9%) using GenBank. A genetic ID could not be assigned in 47 (34.3%) cases using BOLD and in 37 cases (27%) using GenBank. Whereas DNA barcoding can be a useful tool to help identify imported freshwater fishes, it requires further development of publicly available databases to become a reliable means of identification.  相似文献   
12.
13.
Diverse microbial consortia profoundly influence animal biology, necessitating an understanding of microbiome variation in studies of animal adaptation. Yet, little is known about such variability among fish, in spite of their importance in aquatic ecosystems. The Trinidadian guppy, Poecilia reticulata, is an intriguing candidate to test microbiome-related hypotheses on the drivers and consequences of animal adaptation, given the recent parallel origins of a similar ecotype across streams. To assess the relationships between the microbiome and host adaptation, we used 16S rRNA amplicon sequencing to characterize gut bacteria of two guppy ecotypes with known divergence in diet, life history, physiology and morphology collected from low-predation (LP) and high-predation (HP) habitats in four Trinidadian streams. Guts were populated by several recurring, core bacteria that are related to other fish associates and rarely detected in the environment. Although gut communities of lab-reared guppies differed from those in the wild, microbiome divergence between ecotypes from the same stream was evident under identical rearing conditions, suggesting host genetic divergence can affect associations with gut bacteria. In the field, gut communities varied over time, across streams and between ecotypes in a stream-specific manner. This latter finding, along with PICRUSt predictions of metagenome function, argues against strong parallelism of the gut microbiome in association with LP ecotype evolution. Thus, bacteria cannot be invoked in facilitating the heightened reliance of LP guppies on lower-quality diets. We argue that the macroevolutionary microbiome convergence seen across animals with similar diets may be a signature of secondary microbial shifts arising some time after host-driven adaptation.  相似文献   
14.

Background

The identification of genetic changes that confer drug resistance or other phenotypic changes in pathogens can help optimize treatment strategies, support the development of new therapeutic agents, and provide information about the likely function of genes. Elucidating mechanisms of phenotypic drug resistance can also assist in identifying the mode of action of uncharacterized but potent antimalarial compounds identified in high-throughput chemical screening campaigns against Plasmodium falciparum.

Results

Here we show that tiling microarrays can detect de novo a large proportion of the genetic changes that differentiate one genome from another. We show that we detect most single nucleotide polymorphisms or small insertion deletion events and all known copy number variations that distinguish three laboratory isolates using readily accessible methods. We used the approach to discover mutations that occur during the selection process after transfection. We also elucidated a mechanism by which parasites acquire resistance to the antimalarial fosmidomycin, which targets the parasite isoprenoid synthesis pathway. Our microarray-based approach allowed us to attribute in vitro derived fosmidomycin resistance to a copy number variation event in the pfdxr gene, which enables the parasite to overcome fosmidomycin-mediated inhibition of isoprenoid biosynthesis.

Conclusions

We show that newly emerged single nucleotide polymorphisms can readily be detected and that malaria parasites can rapidly acquire gene amplifications in response to in vitro drug pressure. The ability to define comprehensively genetic variability in P. falciparum with a single overnight hybridization creates new opportunities to study parasite evolution and improve the treatment and control of malaria.  相似文献   
15.
Mitochondrial alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, catalyzes the energy wasteful cyanide (CN)‐resistant respiration and plays a role in optimizing photosynthesis. Although it has been demonstrated that leaf AOX is upregulated after illumination, the in vivo mechanism of AOX upregulation by light and its physiological significance are still unknown. In this report, red light and blue light‐induced AOX (especially AOX1a) expressions were characterized. Phytochromes, phototropins and cryptochromes, all these photoreceptors mediate the light‐response of AOX1a gene. When aox1a mutant seedlings were grown under a high‐light (HL) condition, photobleaching was more evident in the mutant than the wild‐type plants. More reactive oxygen species (ROS) accumulation and inefficient dissipation of chloroplast reducing‐equivalents in aox1a mutant may account for its worse adaptation to HL stress. When etiolated seedlings were exposed to illumination for 4 h, chlorophyll accumulation was largely delayed in aox1a plants. We first suggest that more reduction of the photosynthetic electron transport chain and more accumulation of reducing‐equivalents in the mutant during de‐etiolation might be the main reasons.  相似文献   
16.
Abstract: The lacertid material from the locality of Herrlingen 8 (upper Oligocene, MP28) is described as a new species of the genus Plesiolacerta. The material is disarticulated and comprises isolated elements including parietal, frontal, maxilla and dentary. It can be assigned to a single species on the basis of the external surface ornamentation. This morphology is typical for the genus Plesiolacerta, but the material differs in detail from the type species P. lydekkeri. The most significant feature of the new species is that the occipital scute of the parietal bone is narrow, rectangular in shape and anteroposteriorly short. Hitherto, the last occurrence of this genus was in the lower Oligocene. This material represents the first evidence of the existence of this genus in the upper Oligocene. Therefore, our knowledge of its evolution is expanded by providing new data on its spatial and temporal ranges and morphology. This taxon has a much longer history than we thought. In addition, the Eocene species, P. lydekkeri, is reviewed here. P. lydekkeri shares the most lacertid synapomorphies and, given our present knowledge, Plesiolacerta is a taxon very close to or possibly within crown Lacertidae. The frontal and postorbitofrontal of Plesiolacerta are described for the first time. In view of the primitive morphology and early occurrence of Plesiolacerta, it seems that the feature of a longer anterior region of the frontal could be considered as a plesiomorphic feature within lacertid lizards, and the condition in Timon (approximately the same length) as derived.  相似文献   
17.
Largemouth bass Micropterus salmoides are a popular North American angling species that was introduced into South Africa in 1928. To enhance the largemouth bass fisheries, Florida bass Micropterus floridanus were introduced into KwaZulu Natal, South Africa, in 1980. Knowledge on the status of M. floridanus in South Africa is required, because it lives longer and reaches larger sizes than M. salmoides, which may result in heightened impacts on native biota. Because M. floridanus are morphologically similar, but genetically distinct from M. salmoides, the distribution of this species was assessed by genetically screening 185 Micropterus sp. individuals sampled from 20 localities across South Africa using the mitochondrial ND2 gene. Individuals with mitochondrial DNA matching M. salmoides were recovered from 16 localities, whereas M. floridanus mitochondrial DNA was recovered from 13 localities. At nine localities (45%), the mitochondrial DNA of both species was detected. These results demonstrate M. floridanus dispersal to multiple sites across South Africa.  相似文献   
18.
19.
20.
The diagnosis of the anatomic and functional state of urinary organs in girls with internal genital malformations and space-occupying lesions involves magnetic resonance imaging by administering the optimized dose of a magnetic resonance contrast agent (MRCA). The technology makes it possible to evaluate the anatomic features of the urinary tract (magnetic resonance urography), to perform abdominal vascular magnetic resonance angiography, and to draw a conclusion on renal functional status in the use of dynamic magnetic resonance renography. Within a study using one injected MRCA dose, both the anatomic and functional state of the kidney status can be examined, by evaluating MRCA passage singly in the cortical and medullary substances and pelvises, which increases diagnostic accuracy by 46% and promotes the optimization of management tactics in this category of patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号