首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   82篇
  2021年   8篇
  2020年   5篇
  2018年   9篇
  2017年   8篇
  2016年   16篇
  2015年   20篇
  2014年   18篇
  2013年   35篇
  2012年   43篇
  2011年   48篇
  2010年   22篇
  2009年   21篇
  2008年   41篇
  2007年   36篇
  2006年   32篇
  2005年   32篇
  2004年   26篇
  2003年   26篇
  2002年   28篇
  2001年   19篇
  2000年   21篇
  1999年   16篇
  1998年   11篇
  1997年   8篇
  1995年   14篇
  1994年   5篇
  1993年   5篇
  1992年   12篇
  1991年   13篇
  1990年   15篇
  1989年   11篇
  1988年   12篇
  1987年   8篇
  1986年   9篇
  1985年   10篇
  1983年   10篇
  1982年   9篇
  1979年   5篇
  1976年   8篇
  1975年   9篇
  1974年   7篇
  1973年   5篇
  1972年   9篇
  1971年   6篇
  1970年   7篇
  1969年   6篇
  1968年   5篇
  1966年   6篇
  1965年   5篇
  1945年   5篇
排序方式: 共有851条查询结果,搜索用时 327 毫秒
31.
32.
1. The proton NMR spectra of oxidised and reduced French bean plastocyanin have been recorded on a 270 MHz pulsed spctrometer. 2. The spectrum of a mixture containing the protein in the paramagnetic Cu(II) and diamagnetic Cu(I) states is a superposition of the separate spectra. When ferrirate spectra. 3. The results show that self-exchange between Cu(II)- and Cu(I)-plastocyanin is slow on the NMR time scale (kex less than 2-10(4) M-1-s-1 at 50 degrees C), and that electron transfer in the presence of ferricyanide is rapid (k greater than 1-10(5) M-1-s-1).  相似文献   
33.
A method has been developed that permits the quantitative analysis of [14C]acyl-acyl carrier proteins and [14C]acyl CoAs from a typical reaction mixture. The method is based on (a) the initial extraction of free fatty acids and the less polar lipids into petroleum ether from aqueous isopropanol; (b) the precipitation of [14C]acyl-acyl carrier proteins in the presence of ammonium sulfate and chloroform-methanol; and (c) the final separation of acyl CoAs from the more polar lipids by selective adsorption on neutral alumina gel. All fractions can then be analyzed for the composition of complex lipids and 14C-labeled fatty acids by the usual methods.  相似文献   
34.
35.
Monoclonal antibodies were raised against whole cells of two different strains of Selenomonas ruminantium and tested for specificity and sensitivity in immunofluorescence and enzyme-linked immunosorbent assay procedures. Species-specific and strain-specific antibodies were identified, and reactive antigens were demonstrated in solubilized cell wall extracts of S. ruminantium. A monoclonal antibody-based solid-phase immunoassay was established to quantify S. ruminantium in cultures or samples from the rumen, and this had a sensitivity of 0.01 to 0.02% from 10(7) cells. For at least one strain, the extent of antibody reaction varied depending upon the stage of bacterial growth. Antigen characterization by immunoblotting shows that monoclonal antibodies raised against two different strains of S. ruminantium reacted with the same antigen on each strain. For one strain, an additional antigen reacted with both monoclonal antibodies. In the appropriate assay, these monoclonal antibodies may have advantages over gene probes, both in speed and sensitivity, for bacterial quantification studies.  相似文献   
36.
The fine structure of Sphaerotilus natans   总被引:6,自引:0,他引:6  
  相似文献   
37.
In the past decade, mass-spectrometry-based methods have emerged for the quantitative profiling of dynamic changes in protein phosphorylation, allowing the behavior of thousands of phosphorylation sites to be monitored in a single experiment. However, when one is interested in specific signaling pathways, such shotgun methodologies are not ideal because they lack selectivity and are not cost and time efficient with respect to instrument and data analysis time.Here we evaluate and explore a peptide-centric antibody generated to selectively enrich peptides containing the cAMP-dependent protein kinase (PKA) consensus motif. This targeted phosphoproteomic strategy is used to profile temporal quantitative changes of potential PKA substrates in Jurkat T lymphocytes upon prostaglandin E2 (PGE2) stimulation, which increases intracellular cAMP, activating PKA. Our method combines ultra-high-specificity motif-based immunoaffinity purification with cost-efficient stable isotope dimethyl labeling. We identified 655 phosphopeptides, of which 642 (i.e. 98%) contained the consensus motif [R/K][R/K/X]X[pS/pT]. When our data were compared with a large-scale Jurkat T-lymphocyte phosphoproteomics dataset containing more than 10,500 phosphosites, a minimal overlap of 0.2% was observed. This stresses the need for such targeted analyses when the interest is in a particular kinase.Our data provide a resource of likely substrates of PKA, and potentially some substrates of closely related kinases. Network analysis revealed that about half of the observed substrates have been implicated in cAMP-induced signaling. Still, the other half of the here-identified substrates have been less well characterized, representing a valuable resource for future research.The identification and quantification of protein phosphorylation under system perturbations is an integral part of systems biology (1, 2). The combination of phosphopeptide enrichment (36), stable isotope labeling, and high-resolution mass spectrometry (MS) methods (79) has become the method of choice for the identification of novel phosphorylation sites and for the quantitation of temporal dynamics within signaling networks (10, 11), allowing the behavior of thousands of phosphorylation sites to be studied in a single experiment (10, 12, 13). Nowadays, one of the most commonly adopted high-throughput phosphoproteomics strategies utilizes two consecutive separation steps: (i) an initial fractionation to reduce the sample complexity, and (ii) a phosphopeptide-specific affinity purification. Such techniques include strong cation exchange fractionation under acidic conditions (3), followed by a chelation-based method with the use of metal ions (i.e. immobilized metal ion affinity chromatography (4), metal oxide affinity chromatography (10, 14), or Ti4+ immobilized metal ion affinity chromatography (6)). Alternatives to strong cation exchange for the first sample fractionation step have also been reported, including the use of electrostatic repulsion liquid chromatography (15, 16), which is well suited for the identification of multiply phosphorylated peptides, or hydrophilic interaction chromatography (17).Although the number of detected phosphorylated peptides is nowadays impressive, these kinds of methodologies are still inclined to identify/quantify the more abundant phosphoproteins present in a sample. For example, phosphotyrosine peptides are underrepresented because of their relatively lower abundance.In order to analyze key signaling events that may occur on less abundant phosphoproteins, more targeted approaches, focused on a specific pathway or a specific post-translational modification, are thus still essential. Studies examining post-translational modifications are often based on immunoaffinity purification at the protein or peptide level using dedicated antibodies. Recent examples include the selective enrichment of acetylated lysines (18) and phosphorylated tyrosines (19, 20). More recently, the first specific methods targeting serine/threonine phosphorylation motifs using immune-affinity assays have emerged (21, 22). The advantages of targeted approaches are their potentially higher sensitivity and more specific throughput with, as a consequence, relatively faster and easier data interpretation, which make them attractive for many systems biology applications.Immunoaffinity enrichment can be applied at both the protein and the peptide level, and both have been explored to study protein tyrosine phosphorylation (23). The first one results mainly in information on total protein phosphorylation levels. The detection of the actual phosphoresidue might be hampered by the high content of unmodified peptides derived from the immune-purified phosphoprotein and its binding partners. Immunoprecipitation at the peptide level (20, 24, 25), in contrast, leads to improved phosphosite characterization, with the identification of hundreds of sites, albeit with the loss (generally) of information regarding total protein expression.To profile the dynamic regulation of phosphorylation events via mass spectrometry, stable isotope labeling is often implemented, either with the use of amino acids in cell culture (10) or via chemical peptide labeling of the proteolytic digests (26, 27). To identify low-abundant signaling events, phosphoprotein/phosphopeptide immunoprecipitation is typically performed on several milligrams of material because of the substoichiometric abundance of post-translational modifications. This may hamper the use of expensive isotope-labeling reagents such as iTRAQ or tandem mass tag reagents, given the large amount of chemicals needed. Boersema et al. (28) introduced an alternative sensitive and accurate triplex labeling approach using inexpensive reagents (i.e. formaldehyde) that is much less limited in terms of the sample type or amount. We combined this latter stable-isotope dimethyl labeling approach (2729) with highly specific antibodies raised against a set of cAMP-dependent protein kinase (PKA) phosphorylated substrates as based on the current literature (11, 3034). It is generally accepted that PKA phosphorylates sites with the reasonably stringent consensus motif [R/K][R/K/X]X[pS/pT]. It should be noted that this consensus motif resembles somewhat the motifs of other AGC kinases (e.g. Akt, PKG, PKC).The basicity of the PKA motifs may hamper their analysis via MS-based proteomics, especially when trypsin is used as a protease, as the peptides may become too small to be sequenced. The use of trypsin is also unfavorable in the approach presented here when attempting to immunoprecipitate peptides bearing the PKA motif. Therefore, we decided to use Lys-C in order to keep the (dominant (RRX[pS/pT])) phosphorylated motif intact. To enhance identification, we applied decision-tree MS/MS technology (9), which makes use of HCD and ETD for more efficient fragmentation, higher mass accuracy in tandem MS mode, and less background noise (35).We applied this method to screen the response of Jurkat T cells to prostaglandin E2 (PGE2) treatment. PGE2 is a potent inflammatory mediator that plays an important role in several immune-regulatory actions (36). It is produced by many different cell types, including tumor cells, where carcinogenesis is associated with chronic inflammatory responses (37). PGE2 signaling in T cells is initiated by its binding to the G protein–coupled receptors EP1, -2, -3, and -4. Signaling pathways that are initiated by PGE2 are for the most part under control of the second messenger cyclic adenosine monophosphate (cAMP),1 which is generated from ATP by adenylyl cyclase when PGE2 binds to EP2 or EP4 receptors. One of the primary targets of cAMP is PKA—cAMP binding releases the catalytic subunit activating the kinase. In the current study, we efficiently enriched close to 650 phosphopeptides containing the [R/K][R/K/X]X[pS/pT] consensus motif. Almost all these sites were absent in a recently reported comprehensive phosphoproteomics dataset of Jurkat T cells (12), compiled using shotgun strong cation exchange–immobilized metal ion affinity chromatography analysis and containing ∼10,500 phosphorylation sites, illustrative of the complementarity and selectivity of our approach. The qualitative and quantitative data presented here provide a wide-ranging and credible resource of likely PKA substrates. Network analysis confirmed several established cAMP-dependent signaling nodes in our dataset, although most identified potential PKA substrates are “novel” (i.e. not previously reported and/or linked to PKA). Therefore, the dataset presented here can be considered as a comprehensive and reliable resource for future research into cAMP-related signaling.  相似文献   
38.
39.

Background

The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results

In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions

More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.  相似文献   
40.
The P2X7 receptor is a trimeric ATP-gated cation channel important in health and disease. We have observed that the specific phospholipase D (PLD)1 antagonist, CAY10593 impairs P2X7-induced shedding of the ‘low affinity’ IgE receptor, CD23. The current study investigated the mode of action of this compound on P2X7 activation. Measurements of ATP-induced ethidium+ uptake revealed that CAY10593 impaired P2X7-induced pore formation in human RPMI 8226 B cells, P2X7-transfected HEK-293 cells and peripheral blood mononuclear cells. Concentration response curves demonstrated that CAY10593 impaired P2X7-induced pore formation in RPMI 8226 cells more potently than the PLD2 antagonist CAY10594 and the non-specific PLD antagonist halopemide. Electrophysiology measurements demonstrated that CAY10593 also inhibited P2X7-induced inward currents. Notably, RT-PCR demonstrated that PLD1 was absent in RPMI 8226 cells, while choline-Cl medium or 1-butanol, which block PLD stimulation and signalling respectively did not impair P2X7 activation in these cells. This data indicates that CAY10593 impairs human P2X7 independently of PLD1 stimulation and highlights the importance of ensuring that compounds used in signalling studies downstream of P2X7 activation do not affect the receptor itself.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号