首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6695篇
  免费   848篇
  国内免费   4篇
  2021年   80篇
  2019年   54篇
  2018年   77篇
  2017年   58篇
  2016年   108篇
  2015年   192篇
  2014年   181篇
  2013年   268篇
  2012年   288篇
  2011年   349篇
  2010年   205篇
  2009年   179篇
  2008年   272篇
  2007年   260篇
  2006年   222篇
  2005年   260篇
  2004年   234篇
  2003年   236篇
  2002年   216篇
  2001年   200篇
  2000年   165篇
  1999年   174篇
  1998年   108篇
  1997年   83篇
  1996年   85篇
  1995年   75篇
  1994年   88篇
  1993年   70篇
  1992年   137篇
  1991年   125篇
  1990年   144篇
  1989年   125篇
  1988年   126篇
  1987年   103篇
  1986年   91篇
  1985年   100篇
  1984年   95篇
  1983年   75篇
  1982年   79篇
  1981年   87篇
  1980年   67篇
  1979年   88篇
  1978年   61篇
  1977年   55篇
  1976年   57篇
  1975年   67篇
  1974年   65篇
  1973年   73篇
  1972年   65篇
  1968年   51篇
排序方式: 共有7547条查询结果,搜索用时 281 毫秒
991.
992.
ATP-dependent DNA ligases, NAD(+)-dependent DNA ligases, and GTP-dependent RNA capping enzymes are members of a covalent nucleotidyl transferase superfamily defined by a common fold and a set of conserved peptide motifs. Here we examined the role of nucleotidyl transferase motif V ((184)LLKMKQFKDAEAT(196)) in the nick joining reaction of Chlorella virus DNA ligase, an exemplary ATP-dependent enzyme. We found that alanine substitutions at Lys(186), Lys(188), Asp(192), and Glu(194) reduced ligase specific activity by at least an order of magnitude, whereas substitutions at Lys(191) and Thr(196) were benign. The K186A, D192A, and E194A changes had no effect on the rate of single-turnover nick joining by preformed ligase-adenylate but affected subsequent rounds of nick joining at the ligase adenylation step. Conservative substitutions K186R, D192E, and E194D partially restored activity, whereas K186Q, D192N, and E194Q substitutions did not. Alanine mutation of Lys(188) elicited distinctive catalytic defects, whereby single-turnover nick joining by K188A-adenylate was slowed by an order of magnitude, and high levels of the DNA-adenylate intermediate accumulated. The rate of phosphodiester bond formation at a pre-adenylated nick (step 3 of the ligation pathway) was slowed by the K188A change. Replacement of Lys(188) by arginine reversed the step 3 arrest, whereas glutamine substitution was ineffective. Gel-shift analysis showed that the Lys(188) mutants bound stably to DNA-adenylate. We infer that Lys(188) is involved in the chemical step of phosphodiester bond formation.  相似文献   
993.
The mRNA capping apparatus of the protozoan parasite Trypanosoma brucei consists of separately encoded RNA triphosphatase and RNA guanylyltransferase enzymes. The triphosphatase TbCet1 is a member of a new family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi and the malaria parasite Plasmodium falciparum. The protozoal/fungal enzymes are structurally and mechanistically unrelated to the RNA triphosphatases of metazoans and plants. These results highlight the potential for discovery of broad spectrum antiprotozoal and antifungal drugs that selectively block the capping of pathogen-encoded mRNAs. We propose a scheme of eukaryotic phylogeny based on the structure of RNA triphosphatase and its physical linkage to the guanylyltransferase component of the capping apparatus.  相似文献   
994.
995.
996.
Salmonid fishes aggregate for breeding at spatially defined, suitable habitats. These aggregations may evolve into discrete populations when precise natal homing leads to reproductive isolation, and local regimes of selection lead to adaptation. Population structure is often defined by persistent differences in selectively neutral genetic markers and in mean values of morphological and life-history traits between locations. This approach is limited by the spatial scale at which traits diverge; low levels of reproductively successful straying, combined with similar selective pressures on life-history traits resulting from similar habitat features and environmental conditions, can significantly reduce the power of these discriminatory methods. We compared data on three life-history traits and polymorphism of DNA microsatellites for evidence of population subdivision among sockeye salmon spawning on spatially discrete but physically similar beaches on islands in Iliamna Lake, Alaska. We found small but significant differences in average body length, body depth and age composition between sites as well as significant interactions between site and year. These interactions, reflecting random variation in growth or recruitment among sites, are a powerful tool for discriminating populations with similar mean trait values. These results suggest fine-scale homing to natal sites, but the microsatellite data revealed no evidence of restricted gene flow among sites. There seems to be enough straying among the populations to prevent differentiation at neutral traits but enough homing for them to be functionally distinct.  相似文献   
997.
Asthma is characterized by chronic airways inflammation, airway wall remodeling, and airway hyperresponsiveness (AHR). An increase in airway smooth muscle has been proposed to explain a major part of AHR in asthma. We have used unbiased stereological methods to determine whether airway smooth muscle hyperplasia and AHR occurred in sensitized, antigen-challenged Brown Norway (BN) rats. Ovalbumin (OA)-sensitized BN rats chronically exposed to OA aerosol displayed airway inflammation and a modest level of AHR to intravenously administered ACh 24 h after the last antigen challenge. However, these animals did not show an increase in smooth muscle cell (SMC) number in the left main bronchus, suggesting that short-lived inflammatory mechanisms caused the acute AHR. In contrast, 7 days after the last aerosol challenge, there was a modest increase in SMC number, but no AHR to ACh. Addition of FCS to the chronic OA challenge protocol had no effect on the degree of inflammation but resulted in a marked increase in both SMC number and a persistent (7-day) AHR. These results raise the possibility that increases in airway SMC number rather than, or in addition to, chronic inflammation contribute to the persistent AHR detected in this model.  相似文献   
998.
The Charcot-Marie-Tooth (CMT) disorders comprise a group of clinically and genetically heterogeneous hereditary motor and sensory neuropathies, which are mainly characterized by muscle weakness and wasting, foot deformities, and electrophysiological, as well as histological, changes. A subtype, CMT2, is defined by a slight or absent reduction of nerve-conduction velocities together with the loss of large myelinated fibers and axonal degeneration. CMT2 phenotypes are also characterized by a large genetic heterogeneity, although only two genes---NF-L and KIF1Bbeta---have been identified to date. Homozygosity mapping in inbred Algerian families with autosomal recessive CMT2 (AR-CMT2) provided evidence of linkage to chromosome 1q21.2-q21.3 in two families (Zmax=4.14). All patients shared a common homozygous ancestral haplotype that was suggestive of a founder mutation as the cause of the phenotype. A unique homozygous mutation in LMNA (which encodes lamin A/C, a component of the nuclear envelope) was identified in all affected members and in additional patients with CMT2 from a third, unrelated family. Ultrastructural exploration of sciatic nerves of LMNA null (i.e., -/-) mice was performed and revealed a strong reduction of axon density, axonal enlargement, and the presence of nonmyelinated axons, all of which were highly similar to the phenotypes of human peripheral axonopathies. The finding of site-specific amino acid substitutions in limb-girdle muscular dystrophy type 1B, autosomal dominant Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy type 1A, autosomal dominant partial lipodystrophy, and, now, AR-CMT2 suggests the existence of distinct functional domains in lamin A/C that are essential for the maintenance and integrity of different cell lineages. To our knowledge, this report constitutes the first evidence of the recessive inheritance of a mutation that causes CMT2; additionally, we suggest that mutations in LMNA may also be the cause of the genetically overlapping disorder CMT2B1.  相似文献   
999.
Although Nef has been proposed to effect the escape of human immunodeficiency virus type 1 (HIV-1) from cytotoxic T lymphocytes (CTL) through downmodulation of major histocompatibility complex class I molecules, little direct data have been presented previously to support this hypothesis. By comparing nef-competent and nef-deleted HIV-1 strains in an in vitro coculture system, we demonstrate that the presence of this viral accessory gene leads to impairment of the ability of HIV-1-specific CTL clones to suppress viral replication. Furthermore, inhibition by genetically modified CTL that do not require major histocompatibility complex class I-presented antigen (expressing the CD4 T-cell receptor [TCR] zeta-chain hybrid receptor) is similar for both nef-competent and -deleted strains, indicating that Nef does not impair the effector functions of CTL but acts at the level of TCR triggering. In contrast, we note that another accessory gene, vpr, does not induce resistance of HIV-1 to suppression by CTL clones. We conclude that Nef (and not Vpr) contributes to functional HIV-1 immune evasion and that this effect is mediated by diminished antigen presentation to CTL.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号