首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19827篇
  免费   1700篇
  国内免费   9篇
  2023年   65篇
  2022年   88篇
  2021年   329篇
  2020年   203篇
  2019年   262篇
  2018年   295篇
  2017年   289篇
  2016年   484篇
  2015年   803篇
  2014年   883篇
  2013年   1097篇
  2012年   1533篇
  2011年   1587篇
  2010年   975篇
  2009年   843篇
  2008年   1248篇
  2007年   1302篇
  2006年   1218篇
  2005年   1198篇
  2004年   1181篇
  2003年   1099篇
  2002年   1017篇
  2001年   209篇
  2000年   164篇
  1999年   201篇
  1998年   277篇
  1997年   184篇
  1996年   151篇
  1995年   184篇
  1994年   179篇
  1993年   150篇
  1992年   124篇
  1991年   124篇
  1990年   118篇
  1989年   103篇
  1988年   104篇
  1987年   115篇
  1986年   100篇
  1985年   99篇
  1984年   99篇
  1983年   115篇
  1982年   112篇
  1981年   112篇
  1980年   90篇
  1979年   56篇
  1978年   56篇
  1977年   60篇
  1976年   51篇
  1975年   37篇
  1974年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
During its developmental cycle, the intracellular bacterial pathogen Chlamydia trachomatis remains confined within a protective vacuole known as an inclusion. Nevertheless, CD8(+) T cells that recognize Chlamydia Ags in the context of MHC class I molecules are primed during infection. MHC class I-restricted presentation of these Ags suggests that these proteins or domains from them have access to the host cell cytoplasm. Chlamydia products with access to the host cell cytoplasm define a subset of molecules uniquely positioned to interface with the intracellular environment during the pathogen's developmental cycle. In addition to their use as candidate Ags for stimulating CD8(+) T cells, these proteins represent novel candidates for therapeutic intervention of infection. In this study, we use C. trachomatis-specific murine T cells and an expression-cloning strategy to show that CT442 from Chlamydia is targeted by CD8(+) T cells. CT442, also known as CrpA, is a 15-kDa protein of undefined function that has previously been shown to be associated with the Chlamydia inclusion membrane. We show that: 1) CD8(+) T cells specific for an H-2D(b)-restricted epitope from CrpA are elicited at a significant level (approximately 4% of splenic CD8(+) T cells) in mice in response to infection; 2) the response to this epitope correlates with clearance of the organism from infected mice; and 3) immunization with recombinant vaccinia virus expressing CrpA elicits partial protective immunity to subsequent i.v. challenge with C. trachomatis.  相似文献   
992.
993.
Myelin-axolemmal interactions regulate many cellular and molecular events, including gene expression, oligodendrocyte survival and ion channel clustering. Here we report the biochemical fractionation and enrichment of distinct subcellular domains from myelinated nerve fibers. Using antibodies against proteins found in compact myelin, non-compact myelin and axolemma, we show that a rigorous procedure designed to purify myelin also results in the isolation of the myelin-axolemmal complex, a high-affinity protein complex consisting of axonal and oligodendroglial components. Further, the isolation of distinct subcellular domains from galactolipid-deficient mice with disrupted axoglial junctions is altered in a manner consistent with the delocalization of axolemmal proteins observed in these animals. These results suggest a paradigm for identification of proteins involved in neuroglial signaling.  相似文献   
994.
Phylogenetic relationships among nematodes of the strongylid superfamily Metastrongyloidea were analyzed using partial sequences from the large-subunit ribosomal RNA (LSU rRNA) and small-subunit ribosomal RNA (SSU rRNA) genes. Regions of nuclear ribosomal DNA (rDNA) were amplified by polymerase chain reaction, directly sequenced, aligned, and phylogenies inferred using maximum parsimony. Phylogenetic hypotheses inferred from the SSU rRNA gene supported the monophyly of representative taxa from each of the 7 currently accepted metastrongyloid families. Metastrongyloid taxa formed the sister group to representative trichostrongyloid sequences based on SSU data. Sequences from either the SSU or LSU RNA regions alone provided poor resolution for relationships within the Metastrongyloidea. However, a combined analysis using sequences from all rDNA regions yielded 3 equally parsimonious trees that represented the abursate Filaroididae as polyphyletic, Parafilaroides decorus as the sister species to the monophyletic Pseudaliidae, and a sister group relationship between Oslerus osleri and Metastrongylus salmi. Relationships among 3 members of the Crenosomatidae, and 1 representative of the Skrjabingylidae (Skrjabingylus chitwoodorum) were not resolved by these combined data. However, members of both these groups were consistently resolved as the sister group to the other metastrongyloid families. These relationships are inconsistent with traditional classifications of the Metastrongyloidea and existing hypotheses for their evolution.  相似文献   
995.
Virus-specific cytotoxic T lymphocytes (CTL) exert intense selection pressure on replicating simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) in infected individuals. The immunodominant Mamu-A(*)01-restricted Gag p11C, C-M epitope is highly conserved among all sequenced isolates of SIV and therefore likely is structurally constrained. The strategies used by virus isolates to mutate away from an immunodominant epitope-specific CTL response are not well defined. Here we demonstrate that the emergence of a position 2 p11C, C-M epitope substitution (T47I) in a simian-human immunodeficiency virus (SHIV) strain 89.6P-infected Mamu-A(*)01(+) monkey is temporally correlated with the emergence of a flanking isoleucine-to-valine substitution at position 71 (I71V) of the capsid protein. An analysis of the SIV and HIV-2 sequences from the Los Alamos HIV Sequence Database revealed a significant association between any position 2 p11C, C-M epitope mutation and the I71V mutation. The T47I mutation alone is associated with significant decreases in viral protein expression, infectivity, and replication, and these deficiencies are restored to wild-type levels with the introduction of the flanking I71V mutation. Together, these data suggest that a compensatory mutation is selected for in SHIV strain 89.6P to facilitate the escape of that virus from CTL recognition of the dominant p11C, C-M epitope.  相似文献   
996.
Cell killing by avian leukosis virus subgroup B (ALV-B) in cultures has been extensively studied, but the molecular basis of this process has not been established. Here we show that superinfection, which has been linked to cell killing by ALV-B, plays no crucial role in cell death induction. Instead, we show that signaling by the ALV-B receptor, TVB(S3), a member of the tumor necrosis factor receptor family, is essential for ALV-B-mediated cell death. TVB(S3) activated caspase-dependent apoptosis during ALV-B infection. Strikingly, apoptosis induction occurred predominantly in uninfected cells, while ALV-B-infected cells were protected against cell death. This bystander killing phenomenon was reproduced in a virus-free system by cocultivating ALV-B Env-expressing cells with TVB(S3)-expressing cells. Taken together, our results indicated that ALV-B-mediated apoptosis is triggered by ALV-B Env-TVB(S3) interactions.  相似文献   
997.
998.
999.
Erythrocyte invasion by the malaria merozoite is accompanied by the regulated discharge of apically located secretory organelles called micronemes. Plasmodium falciparum apical membrane antigen-1 (PfAMA-1), which plays an indispensable role in invasion, translocates from micronemes onto the parasite surface and is proteolytically shed in a soluble form during invasion. We have previously proposed, on the basis of incomplete mass spectrometric mapping data, that PfAMA-1 shedding results from cleavage at two alternative positions. We now show conclusively that the PfAMA-1 ectodomain is shed from the merozoite solely as a result of cleavage at a single site, just 29 residues away from the predicted transmembrane-spanning sequence. Remarkably, this cleavage is mediated by the same membrane-bound parasite serine protease as that responsible for shedding of the merozoite surface protein-1 (MSP-1) complex, an abundant, glycosylphosphatidylinositol-anchored multiprotein complex. Processing of MSP-1 is essential for invasion. Our results indicate the presence on the merozoite surface of a multifunctional serine sheddase with a broad substrate specificity. We further demonstrate that translocation and shedding of PfAMA-1 is an actin-independent process.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号