首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4721篇
  免费   395篇
  国内免费   2篇
  2023年   17篇
  2022年   10篇
  2021年   64篇
  2020年   47篇
  2019年   68篇
  2018年   75篇
  2017年   62篇
  2016年   99篇
  2015年   197篇
  2014年   213篇
  2013年   256篇
  2012年   367篇
  2011年   388篇
  2010年   252篇
  2009年   221篇
  2008年   327篇
  2007年   310篇
  2006年   252篇
  2005年   270篇
  2004年   243篇
  2003年   253篇
  2002年   249篇
  2001年   67篇
  2000年   50篇
  1999年   68篇
  1998年   48篇
  1997年   34篇
  1996年   35篇
  1995年   38篇
  1994年   37篇
  1993年   34篇
  1992年   36篇
  1991年   36篇
  1990年   21篇
  1989年   21篇
  1988年   25篇
  1987年   27篇
  1986年   22篇
  1985年   18篇
  1984年   22篇
  1983年   24篇
  1982年   18篇
  1981年   22篇
  1980年   16篇
  1979年   13篇
  1978年   17篇
  1977年   17篇
  1976年   15篇
  1975年   10篇
  1969年   12篇
排序方式: 共有5118条查询结果,搜索用时 62 毫秒
31.
We measured the production of untargeted mutations in the cI and cII genes of untreated λ phage undergoing a lytic cycle in UV-irradiated bacterial hosts. As previously shown, treatment with 4 μg/ml of rifampicin during post-irradiation incubation inhibited amplification of the RecA protein in these cells. In addition, we observed a decreased mutation rate compared to the untreated, irradiated bacteria. Treatment with 4 μg/ml or 8 μg/ml rifampicin did not prevent the UV induction of the umuDC operon, as judged by assay of β-galactosidase activity in a umuC-lacZ fusion strain. In contrast, the UV-induction of β-galactosidase in the sulA-lacZ fusion strain was decreased by 4 μg/ml rifampicin. The inhibition of untargeted mutagenesis by this drug treatment was also observed in a strain constitutive for SOS functions (lexA (Def)) as well as ina RecA-overproducing plasmid strain, that blocks induction of heat-shock proteins, factor(s) in wild-type recA+ cells. An htpR165-carrying strain, that blocks induction of heat-shock proteins, exhibited normal UV-promoted mutagenesis. A correlation was observed between the cellular concentration of RecA protein, increased spontaneously by a temperature shift in a lexA(Ts) strain, and the extent of UV-promoted untargeted mutagenesis. These results suggest a mechanistic role of RecA protein in this process.  相似文献   
32.
Pea chloroplasts were found to take up actively ATP and ADP and exchange the external nucleotides for internal ones. Using carrier-free [14C]ATP, the rate of nucleotide transport in chloroplasts prepared from 12–14-day-old plants was calculated to be 330 μmol ATP/g chlorophyll/min, and the transport was not affected by light or temperature between 4 and 22°C. Adenine nucleotide uptake was inhibited only slightly by carboxyatractylate, whereas bongkrekic acid was nearly as effective an inhibitor of the translocator in pea chloroplasts as it was in mammalian mitochondria. There was no counter-transport of adenine nucleotides with substrates carried on the phosphate translocator including inorganic phosphate, 3-phosphoglycerate and dihydroxyacetone phosphate. However, internal or external phosphoenolpyruvate, normally considered to be transported on the phosphate carrier in chloroplasts, was able to exchange readily with adenine nucleotides. Furthermore, inorganic pyrophosphate which is not transported by the phosphate carrier initiated efflux of phosphoenolpyruvate as well as ATP from the chloroplast. These findings illustrate some interesting similarities as well as differences between the various plant phosphate and nucleotide transport systems which may relate to their role in photosynthesis.  相似文献   
33.
Summary Five oligomycin-resistant (oli r) mutant strains of Neurospora crassa were analyzed for their growth rate and for the periodicity of their circadian rhythm. The most resistant strains had periods of 18–19 h while the least resistant strain had a normal period of 21.0 h. There was a rough correlation between the in vivo degree of oligomycinresistance and the amount of change in the period. Several of the oli r mutations have been previously described by Sebald et al. (1977) in terms of known amino acid changes in the primary structure of the proteolipid, or DCCD-binding protein, found in the F0 membrane portion of the mitochondrial ATP synthetase. Amino acid changes in the structure of this protein are reported here for two other oli r mutations. The proteolipid isolation procedures were slightly modified to include a delipidation step, and an HPLC procedure was developed to separate the hydrophobic peptides of this protein. Analysis of heterocaryons carrying both the oli r and oli s markers indicated that the oli r and oli s mutations were codominant to each other in terms of period and growth rate. The changes in the primary structure of this DCCD-binding protein reported here are the first known examples of changes in the primary structure of a protein which alter the period of a circadian rhythm.  相似文献   
34.
Studies of collagen synthesis by specific sections of individual fetal bovine costochondral junction growth plates were conducted and histologically related to the zones from which the sections were derived. Sections were metabolically labeled in organ culture to examine the synthesis of collagen and its precursors. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that Type II collagen was the major species synthesized in all tissue sections; 1 alpha, 2 alpha, 3 alpha collagen chains were synthesized in all growth plate sections and to a small extent in the fetal structural cartilage. A short chain collagen was synthesized predominantly in the zones of degeneration and provisional calcification and accounted for 8-12% of the radioactivity in this section. This short chain collagen has 63-kDa subunits which are converted to 46-kDa species by limited proteolysis with pepsin. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that both the pepsin- and non-pepsin-treated forms of short chain collagen are disulfide-bonded. Digestion with bacterial collagenase showed that the 46-kDa and a major portion of the 63-kDa forms are collagenous. Pulse-chase studies in organ culture did not demonstrate an obvious precursor to the 63-kDa form, and there was no conversion to the 46-kDa after 20 h. Synthesis of short chain collagen appears to be specific to the process of endochondral ossification in the growth plate; its appearance may be critical to this transition process.  相似文献   
35.
Summary The enzyme protochlorophyllide (pchlide) reductase has been identified amongst the peptides, resolved by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), of chloroplast membranes from oat and barley plants. In support of this identification the enzymic activity associated with the enzyme has also been measured in the same preparations. A higher level of enzyme was found in plants which had been darkened prior to extraction. Based on this data, mechanisms for the light regulated diurnal variation of the reductase are discussed.  相似文献   
36.
Three stage-specific cohesive systems operate in D. discoideum: VEG, elaborated by vegetative cells: AR, by aggregation competent cells; and PAR, by post aggregation stage cells. Previous study of a mutant strain JC-5 had shown the stability of its PAR system (but not the AR) to be temperature sensitive. However, the phenotypic expression of this mutation termed Coh A is complicated by the presence in that strain of a preexisting mutant gene Rde A, which accelerates developmental events generally and alters the pattern of morphogenesis. Genetic evidence presented here indicates that the two mutations have been separated by parasexual recombination yielding a Coh A, Rde A+ segregant class of which strain JC-36 is a prototype. At the permissive temperature, JC-36 follows a morphogenetic sequence like that of the wild type in respect to timing, morphogenetic pattern, and spore appearance. At the restrictive temperature, it forms normal aggregates at the usual time but exhibits two morphogenetic aberrancies during post aggregative development. First, fruit construction is arrested at a stage approximating the 16 hr “Bottle” stage of the wild type, though more squat and blunt tipped, and then the aggregate regresses. Cytodifferentiation into spores and stalk cells is also blocked. Second, a shift of slugs migrating normally at the permissive temperature to the restrictive causes the latter to disintegrate progressively as they leave clumps of cells behind them within the flattened sheath. JC-36 cells developing at the restrictive temperature also exhibited a decrease in EDTA resistant cohesivity attributable on two grounds to the sensitivity of the PAR system. In addition, the disappearance of the AR system completed in the wild type by the Mexicanhat (18–19 hr) stage is indefinitely arrested at an intermediate level in JC-36.  相似文献   
37.
The acetyl-CoA pathway of autotrophic growth   总被引:3,自引:0,他引:3  
Abstract The most direct conceivable route for synthesis of multicarbon compounds from CO2 is to join two molecules of CO2 together to make a 2-carbon compound and then polymerize the 2-carbon compound or add CO2 successively to the 2-carbon compound to make multicarbon compounds. Recently, it has been demonstrated that the bacterium, Clostridium thermoaceticum , grows autotrophically by such a process. The mechanism involves the reduction of one molecule of CO2 to a methyl group and then its combination with a second molecule of CO2 and CoA to form acetyl-CoA. We have designated this autotrophic pathway the acetyl-CoA pathway [1]. Evidence is accumulating that this pathway is utilized by other bacteria that grow with CO2 and H2 as the source of carbon and energy. This group includes bacteria which, like C. thermoaceticum , produce acetate as a major end product and are called acetogens or acetogenic bacteria. It also includes the methane-producing bacteria and sulfate-reducing bacteria.
The purpose of this review is to examine critically the evidence that the acetyl-CoA pathway occurs in other bacteria by a mechanism that is the same or similar to that found in C. thermoaceticum . For this purpose, the mechanism of the acetyl-CoA pathway, as found in C. thermoaceticum , is described and hypothetical mechanisms for other organisms are presented based on the acetyl-CoA pathway of C. thermoaceticum . The available data have been reviewed to determine if the hypothetical schemes are in accord with presently known facts. We conclude that the formation of acetyl-CoA by other acetogens, the methanogens and sulphate-reducing bacteria occurs by a mechanism very similar to that of C. thermoaceticum .  相似文献   
38.
Abstract Three proteins from Halobacterium marismortui , malate dehydrogenase (hMDH), glutamate dehydrogenase (hGDH) and ferredoxin (hFD) were purified and characterized with respect to their molecular masses, amino acid composition and, for hFD only, primary structure. Striking features of halophilic proteins are: the high excess of acidic over basic residues; acidic clusters in the sequence. Low-salt concentration causes inactivation and changes in structural parameters of hMDH and hGDH. Reactivation of hMDH involves long-lived stable intermediates. The salt concentration optimum of enzymic activity is independent of salt nature. The high capacity of halophilic proteins to retain water and salt is due to unique molecular properties, studied by physico-chemical techniques.  相似文献   
39.
The molecular structure of human foetal intestinal alkaline phosphatase was defined by high-resolution two-dimensional polyacrylamide-gel electrophoresis and amino acid inhibition studies. Comparison was made with the adult form of intestinal alkaline phosphatase, as well as with alkaline phosphatases isolated from cultured foetal amnion cells (FL) and a human tumour cell line (KB). Two non-identical subunits were isolated from the foetal intestinal isoenzyme, one having same molecular weight and isoelectric point as placental alkaline phosphatase, and the other corresponding to a glycosylated subunit of the adult intestinal enzyme. The FL-cell and KB-cell alkaline phosphatases were also found to contain two subunits similar to those of the foetal intestinal isoenzyme. Characterization of neuraminidase digests of the non-placental subunit showed it to be indistinguishable from the subunits of the adult intestinal isoenzyme. This implies that no new phosphatase structural gene is involved in the transition from the expression of foetal to adult intestinal alkaline phosphatase, but that the molecular changes involve suppression of the placental subunit and loss of neuraminic acid from the non-placental subunit. Enzyme-inhibition studies demonstrated an intermediate response to the inhibitors tested for the foetal intestinal, FL-cell and KB-cell isoenzymes when compared with the placental, adult intestinal and liver forms. This result is consistent with the mixed-subunit structure observed for the former set of isoenzymes. In summary, this study has defined the molecular subunit structure of the foetal intestinal form of alkaline phosphatase and has demonstrated its expression in a human tumour cell line.  相似文献   
40.
Mutant strains of Neurospora crassa that lack trehalase and are unable to grow on trehalose were isolated, and the gene (tre) was positioned on the right arm of linkage group I. Maltase and beta-galactosidase activities are almost identical in tre(-) strains, whereas that of invertase was reduced by more than half and those of acid phosphatase and amylase were somewhat increased. Heterocaryons between standard and trehalaseless strains yield less than one-tenth the activity of the former. In addition, strains with duplications heterozygous for trehalase produce less than 1% of the activity of the standard strain. An inhibitor of trehalase has been found in tre(-) strains; its sensitivity to heat and proteolysis, and its nondialyzability suggest that this substance is a protein. The mig gene, which determines the rate of migration of trehalase on acrylamide gels, has been shown to be less than 1 map unit away from the tre gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号