首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   7篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2017年   4篇
  2016年   2篇
  2015年   6篇
  2014年   1篇
  2013年   7篇
  2012年   12篇
  2011年   8篇
  2010年   7篇
  2009年   10篇
  2008年   3篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有110条查询结果,搜索用时 109 毫秒
11.
Pathogen recognition is the first step of immune reactions. In animals and plants, direct or indirect pathogen recognition is often mediated by a wealth of fast-evolving receptors, many of which contain ligand-binding and signal transduction domains, such as leucine-rich or tetratricopeptide repeat (LRR/TPR) and NB-ARC domains, respectively. In order to identify candidates potentially involved in algal defense, we mined the genome of the brown alga Ectocarpus siliculosus for homologues of these genes and assessed the evolutionary pressures acting upon them. We thus annotated all Ectocarpus LRR-containing genes, in particular an original group of LRR-containing GTPases of the ROCO family, and 24 NB-ARC-TPR proteins. They exhibit high birth and death rates, while a diversifying selection is acting on their LRR (respectively TPR) domain, probably affecting the ligand-binding specificities. Remarkably, each repeat is encoded by an exon, and the intense exon shuffling underpins the variability of LRR and TPR domains. We conclude that the Ectocarpus ROCO and NB-ARC-TPR families are excellent candidates for being involved in recognition/transduction events linked to immunity. We further hypothesize that brown algae may generate their immune repertoire via controlled somatic recombination, so far only known from the vertebrate adaptive immune systems.  相似文献   
12.
The mistletoe, Viscum album, living on Scots pine (Pinus sylvestris) has been reported barely to regulate its transpiration and thus heavily to affect the gas exchange of its host. The extent of this mistletoe effect and its underlying mechanism has, so far, only been partially analysed. In this study, pine branches with different mistletoe infestation levels were investigated by sap flow gauges and analysed with a modelling approach to identify the mistletoe-induced stomatal regulation of pine and its consequences for the water and carbon balances of the tree. It was found that Viscum album barely regulates its stomata and that pines consequently compensate for the additional water loss of mistletoes by closing their own stomata. Despite the reduced stomatal aperture of the needles, the total water loss of branches with mistletoes increased. Furthermore, the increasingly closed stomata reduced carbon assimilation for the pine. Such a negative effect of the mistletoes on pine's stomatal conductance and carbon gain was particularly strong during dry periods. Our study therefore suggests that mistletoe-induced stomatal closure is a successful mechanism against dying from hydraulic failure in the short term but increases the risk of carbon starvation in the long term. With the current conditions in Valais, Switzerland, a tree with more than about 10-20% of its total leaf area attributable to mistletoes is at the threshold of keeping a positive carbon balance. The currently increasing mistletoe abundance, due to increasing mean annual temperatures, is therefore accelerating the ongoing pine decline in many dry inner-Alpine valleys.  相似文献   
13.
Under drought conditions, arbuscular mycorrhizal (AM) fungi alter water relationships of plants and improve their resistance to drought. In a factorial greenhouse experiment, we tested the effects of the AM symbiosis and precipitation regime on the performance (growth, gas exchange, nutrient status and mycorrhizal responsiveness) of Boswellia papyrifera seedlings. A continuous precipitation regime was imitated by continuous watering of plants to field capacity every other day during 4 months, and irregular precipitation by pulsed watering of plants where watering was switched every 15 days during these 4 months, with 15 days of watering followed by 15 days without watering. There were significantly higher levels of AM colonization under irregular precipitation regime than under continuous precipitation. Mycorrhizal seedlings had higher biomass than control seedlings. Stomatal conductance and phosphorus mass fraction in shoot and root were also significantly higher for mycorrhizal seedlings. Mycorrhizal seedlings under irregular watering had the highest biomass. Both a larger leaf area and higher assimilation rates contributed to higher biomass. Under irregular watering, the water use efficiency increased in non-mycorrhizal seedlings through a reduction in transpiration, while in mycorrhizal seedlings irregular watering increased transpiration. Because assimilation rates increased even more, mycorrhizal seedlings achieved an even higher water use efficiency. Boswellia seedlings allocated almost all carbon to the storage root. Boswellia seedlings had higher mass fractions of N, P, and K in roots than in shoots. Irregular precipitation conditions apparently benefit Boswellia seedlings when they are mycorrhizal. Electronic supplementary material The online version of this article (doi:10.1007/s00442-012-2258-3) contains supplementary material, which is available to authorized users.  相似文献   
14.
15.
Food Competition Between Wild Orangutans in Large Fig Trees   总被引:1,自引:0,他引:1  
Orangutans are usually solitary. However, occasionally aggregations are formed, especially in large fruiting fig trees. Individuals in these aggregations may experience scramble or contest competition for food. We investigated the type and strength of food competition in large figs among wild Sumatran orangutans. Adult males foraged more efficiently than adult females and subadult males did. The availability of ripe fruit is positively related to the number of orangutans visiting a fig tree and their foraging efficiency. The number of orangutans in a fig tree did not affect patch residence time and foraging behavior, though orangutans spent more time feeding when aggregation size increased in a fig tree. Dominance relationships could be measured in a number of dyads. Differences in dominance did not affect foraging behavior. The patch residence time of subordinate individuals was reduced on days that a dominant individual also visited the fig. In conclusion, orangutans seem to adjust aggregation size to the number of available ripe fruits in a fig tree in such a way that scramble competition was absent. Contest competition determined access to large fig trees.  相似文献   
16.
The heterozygosity status of polymorphic elements of the immune system, such as the major histocompatibility complex (MHC), is known to increase the potential to cope with a wider variety of pathogens. Pre‐ and postcopulatory processes may regulate MHC heterozygosity. In a population where mating occurs among individuals that share identical MHC haplotypes, postcopulatory selection may disfavour homozygous offspring or ones with two MHC haplotypes identical to its mother. We tested these ideas by determining the incidence of MHC‐heterozygous and MHC‐homozygous individuals in a pedigreed, partially consanguineous captive rhesus monkey colony. Bayesian statistics showed that when parents share MHC haplotypes, the distribution of MHC‐heterozygous and MHC‐homozygous individuals significantly fitted the expected Mendelian distribution, both for the complete MHC haplotypes, and for MHC class I or II genes separately. Altogether, we found in this captive colony no evidence for postcopulatory selection against MHC‐homozygous individuals. However, the distribution of paternally and maternally inherited MHC haplotypes tended to differ significantly from expected. Individuals with two MHC haplotypes identical to their mother were underrepresented and offspring with MHC haplotypes identical to their father tended to be overrepresented. This suggests that postcopulatory processes affect MHC haplotype combination in offspring, but do not prevent low MHC heterozygosity.  相似文献   
17.
18.

Background  

Homologous recombination mediated by the λ-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells. Alternatively, DNA fragments are generated in vivo by digestion of a donor plasmid with a nuclease that does not cleave the host genome. In both cases the λ-Red gene products recombine homologous regions carried on the linear DNA fragments with the chromosome. We have successfully used both techniques to generate chromosomal mutations in E. coli K-12 strains. However, we have had limited success with these λ-Red based recombination techniques in pathogenic E. coli strains, which has led us to develop an enhanced protocol for recombineering in such strains.  相似文献   
19.
Genetical metabolomics [metabolite profiling combined with quantitative trait locus (QTL) analysis] has been proposed as a new tool to identify loci that control metabolite abundances. This concept was evaluated in a case study with the model tree Populus. Using HPLC, the peak abundances were analyzed of 15 closely related flavonoids present in apical tissues of two full-sib poplar families, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24, and correlation and QTL analysis were used to detect flux control points in flavonoid biosynthesis. Four robust metabolite quantitative trait loci (mQTL), associated with rate-limiting steps in flavonoid biosynthesis, were mapped. Each mQTL was involved in the flux control to one or two flavonoids. Based on the identities of the affected metabolites and the flavonoid pathway structure, a tentative function was assigned to three of these mQTL, and the corresponding candidate genes were mapped. The data indicate that the combination of metabolite profiling with QTL analysis is a valuable tool to identify control points in a complex metabolic pathway of closely related compounds.  相似文献   
20.
The strength of competitive and facilitative interactions in plant communities is expected to change along resource gradients. Contrasting theoretical models predict that with increasing abiotic stress, facilitative effects are higher, lower, or similar than those found under more productive conditions. While these predictions have been tested in stressful environments such as arid and alpine ecosystems, they have hardly been tested for more productive African woodlands. We experimentally assessed the strength of tree seedling facilitation by nurse trees in mesic and dry woodlands in Benin, West Africa. We planted seedlings of the drought‐sensitive Afzelia africana and the drought‐tolerant Khaya senegalensis under three microsite conditions (closed woodland, woodland gap, and open fields). Seedling survival was greater within woodlands compared with open fields in both the mesic and dry woodlands. The relative benefits in seedling survival were larger at the dry site, especially for the drought‐sensitive species. Nevertheless, plant interactions became neutral or negative during the dry season in the drier woodland, indicating that the net positive effects may be lost under very stressful abiotic conditions. We conclude that facilitation also occurs in the relatively more productive conditions of African woodlands. Our results underscore the role of environmental variation in space and time, and the stress tolerance of species, in explaining competitive and facilitative interactions within plant communities. Abstract in French is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号