首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   495篇
  免费   53篇
  2023年   5篇
  2021年   8篇
  2020年   8篇
  2019年   8篇
  2018年   3篇
  2017年   14篇
  2016年   17篇
  2015年   22篇
  2014年   29篇
  2013年   29篇
  2012年   47篇
  2011年   30篇
  2010年   23篇
  2009年   15篇
  2008年   22篇
  2007年   25篇
  2006年   24篇
  2005年   27篇
  2004年   18篇
  2003年   20篇
  2002年   15篇
  2001年   11篇
  2000年   5篇
  1999年   9篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1994年   3篇
  1993年   4篇
  1992年   8篇
  1991年   7篇
  1990年   7篇
  1988年   4篇
  1987年   12篇
  1986年   4篇
  1985年   2篇
  1983年   2篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1972年   5篇
  1969年   2篇
  1967年   5篇
  1966年   2篇
  1965年   3篇
  1959年   2篇
  1958年   3篇
  1957年   2篇
  1925年   1篇
排序方式: 共有548条查询结果,搜索用时 265 毫秒
51.
Boccini F  Herold S 《Biochemistry》2004,43(51):16393-16404
The strong oxidizing and nitrating agent peroxynitrite has been shown to diffuse into erythrocytes and oxidize oxyhemoglobin (oxyHb) to metHb. Because the value of the second-order rate constant for this reaction is on the order of 10(4) M(-)(1) s(-)(1) and the oxyHb concentration is about 20 mM (expressed per heme), this process is rather fast and oxyHb is considered a sink for peroxynitrite. In this work, we showed that the reaction of oxyHb with peroxynitrite, both in the presence and absence of CO(2), proceeds via the formation of oxoiron(iv)hemoglobin (ferrylHb), which in a second step is reduced to metHb and nitrate by its reaction with NO(2)(*). In the presence of physiological relevant amounts of CO(2), ferrylHb is generated by the reaction of NO(2)(*) with the coordinated superoxide of oxyHb (HbFe(III)O(2)(*)(-)). This reaction proceeds via formation of a peroxynitrato-metHb complex (HbFe(III)OONO(2)), which decomposes to generate the one-electron oxidized form of ferrylHb, the oxoiron(iv) form of hemoglobin with a radical localized on the globin. CO(3)(*)(-), the second radical formed from the reaction of peroxynitrite with CO(2), is also scavenged efficiently by oxyHb, in a reaction that finally leads to metHb production. Taken together, our results indicate that oxyHb not only scavenges peroxynitrite but also the radicals produced by its decomposition.  相似文献   
52.
53.
During apoptosis, the pro-apoptotic Bcl-2 family proteins BAK and BAX form large oligomeric pores in the mitochondrial outer membrane. Apoptotic factors, including cytochrome c, are released through these pores from the mitochondrial intermembrane space into the cytoplasm where they initiate the cascade of events leading to cell death. To better understand this pivotal step toward apoptosis, a method was developed to induce membrane permeabilization by BAK in the membrane without using the full-length protein. Using a soluble form of BAK with a hexahistidine tag at the C terminus and a liposomal system containing the Ni2+-nitrilotriacetic acid lipid analog that can bind hexahistidine-tagged proteins, BAK oligomers were formed in the presence of the activator protein p7/p15Bid. In this system, we determined the conformational changes in BAK upon membrane insertion by applying the site-directed spin labeling method of EPR to 13 different amino acid locations. Upon membrane insertion, the BH3 domains were reorganized, and the α5-α6 helical hairpin structure was partially exposed to the membrane environment. The monomer-monomer interface in the oligomeric structure was also mapped by measuring the distance-dependent spin-spin interactions for each residue location. Spin labels attached in the BH3 domain were juxtaposed within 5–10 Å distance in the oligomeric form in the membrane. These results are consistent with the current hypothesis that BAK or BAX forms homodimers, and these homodimers assemble into a higher order oligomeric pore. Detailed analyses of the data provide new insights into the structure of the BAX or BAK homodimer.  相似文献   
54.
Oxidative phosphorylation in mitochondria requires the synthesis of proteins encoded in the mitochondrial DNA. The mitochondrial translation machinery differs significantly from that of the bacterial ancestor of the organelle. This is especially evident from many mitochondria-specific ribosomal proteins. An important site of the ribosome is the polypeptide tunnel exit. Here, nascent chains are exposed to an aqueous environment for the first time. Many biogenesis factors interact with the tunnel exit of pro- and eukaryotic ribosomes to help the newly synthesized proteins to mature. To date, nothing is known about the organization of the tunnel exit of mitochondrial ribosomes. We therefore undertook a comprehensive approach to determine the composition of the yeast mitochondrial ribosomal tunnel exit. Mitochondria contain homologues of the ribosomal proteins located at this site in bacterial ribosomes. Here, we identified proteins located in their proximity by chemical cross-linking and mass spectrometry. Our analysis revealed a complex network of interacting proteins including proteins and protein domains specific to mitochondrial ribosomes. This network includes Mba1, the membrane-bound ribosome receptor of the inner membrane, as well as Mrpl3, Mrpl13, and Mrpl27, which constitute ribosomal proteins exclusively found in mitochondria. This unique architecture of the tunnel exit is presumably an adaptation of the translation system to the specific requirements of the organelle.  相似文献   
55.
56.
Bacillus cereus, B. thuringiensis and B. anthracis are closely related medically and economically important bacterial species that belong to the B. cereus group. Members of the B. cereus group carry genes encoding several important virulence factors, including enterotoxins, phospholipases and exotoxins. Since it is difficult to differentiate among B. cereus group members, and because Bacillus virulence factors are very important for pathogenesis, we explored the use of microarray-based detection of virulence factor genes as a tool for strain identification and for determining virulence. Our method requires an initial multiplex PCR amplification step, followed by identification of the PCR amplicons by hybridization to an oligonucleotide microarray containing genes for all three types of Bacillus virulence factors including B. anthracis virulence factors. The DNA chip described here contains 21 identical arrays used for analysis of seven samples in triplicates. Using the arrays, we found that virulence factors are present in several combinations in the strains analyzed. This work also demonstrates the potential of oligonucleotide microarrays for medical, food safety and biodefense analysis of microbial pathogens.  相似文献   
57.
58.
Type 1 diabetes is a common autoimmune disease that affects millions of people worldwide and has an incidence that is increasing at a striking rate, especially in young children. It results from the targeted self-destruction of the insulin-secreting β cells of the pancreas and requires lifelong insulin treatment. The effects of chronic hyperglycemia - the result of insulin deficiency - include secondary endorgan complications. Over the past two decades our increased understanding of the pathogenesis of this disease has led to the development of new immunomodulatory treatments. None have yet received regulatory approval, but this report highlights recent progress in this area.  相似文献   
59.

Background

Acidform gel, an acid-buffering product that inactivates spermatozoa, may be an effective topical non-hormonal contraceptive. This study was designed to evaluate the safety of vaginal dosing and effects of Acidform on mucosal immune mediators, antimicrobial properties of genital secretions, and vaginal microbiota.

Methods

Thirty-six sexually abstinent U.S. women were randomized to apply Acidform or hydroxyethylcellulose (HEC) placebo gel twice daily for 14 consecutive days. Safety was assessed by symptoms and pelvic examination. The impact of gel on mucosal immunity was assessed by quantifying cytokines, chemokines, antimicrobial proteins and antimicrobial activity of genital secretions collected by cervicovaginal lavage (CVL) at screening, 2 hours after gel application, and on days 7, 14 and 21. Vaginal microbiota was characterized at enrollment and day 14 using species-specific quantitative PCR assays.

Results

The median vaginal and cervical pH was significantly lower 2 hours after application of Acidform and was associated with an increase in the bactericidal activity of CVL against E. coli. However, 65% of women who received Acidform had at least one local adverse event compared with 11% who received placebo (p = 0.002). While there was no increase in inflammatory cytokines or chemokines, CVL concentrations of lactoferrin and interleukin-1 receptor antagonist (IL-1ra), an anti-inflammatory protein, were significantly lower following Acidform compared to HEC placebo gel application. There were no significant changes in Lactobacillus crispatus or Lactobacillus jensenii in either group but there was a decrease in Gardnerella vaginalis in the Acidform group (p = 0.08).

Conclusions

Acidform gel may augment mucosal defense as evidenced by an increase in bactericidal activity of genital secretions against E. coli and a decrease in Gardnerella vaginalis colonization. However, Acidform was associated with more irritation than placebo and lower levels of antimicrobial (lactoferrin) and anti-inflammatory (IL-1ra) proteins. These findings indicate the need for additional safety studies of this candidate non-hormonal contraceptive.

Trial Registration

ClinicalTrials.gov NCT00850837  相似文献   
60.

Background

Cancer patients carrying mutations in the dihydropyrimidine dehydrogenase gene (DPYD) have a high risk to experience severe drug-adverse effects following chemotherapy with fluoropyrimidine drugs such as 5-fluorouracil (5-FU) or capecitabine. The pretreatment detection of this impairment of pyrimidine catabolism could prevent serious, potentially lethal side effects. As known deleterious mutations explain only a limited proportion of the drug-adverse events, we systematically searched for additional DPYD variations associated with enhanced drug toxicity.

Methodology/Principal Findings

We performed a whole gene approach covering the entire coding region and compared DPYD genotype frequencies between cancer patients with good (n = 89) and with poor (n = 39) tolerance of a fluoropyrimidine-based chemotherapy regimen. Applying logistic regression analysis and sliding window approaches we identified the strongest association with fluoropyrimidine-related grade III and IV toxicity for the non-synonymous polymorphism c.496A>G (p.Met166Val). We then confirmed our initial results using an independent sample of 53 individuals suffering from drug-adverse-effects. The combined odds ratio calculated for 92 toxicity cases was 4.42 [95% CI 2.12–9.23]; p (trend)<0.001; p (corrected) = 0.001; the attributable risk was 56.9%. Comparing tumor-type matched sets of samples, correlation of c.496A>G with toxicity was particularly present in patients with gastroesophageal and breast cancer, but did not reach significance in patients with colorectal malignancies.

Conclusion

Our results show compelling evidence that, at least in distinct tumor types, a common DPYD polymorphism strongly contributes to the occurrence of fluoropyrimidine-related drug adverse effects. Carriers of this variant could benefit from individual dose adjustment of the fluoropyrimidine drug or alternate therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号