首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2666篇
  免费   253篇
  国内免费   5篇
  2023年   17篇
  2022年   10篇
  2021年   59篇
  2020年   26篇
  2019年   60篇
  2018年   64篇
  2017年   67篇
  2016年   114篇
  2015年   192篇
  2014年   200篇
  2013年   210篇
  2012年   273篇
  2011年   248篇
  2010年   155篇
  2009年   131篇
  2008年   182篇
  2007年   174篇
  2006年   153篇
  2005年   134篇
  2004年   95篇
  2003年   98篇
  2002年   93篇
  2001年   19篇
  2000年   13篇
  1999年   10篇
  1998年   24篇
  1997年   10篇
  1996年   8篇
  1995年   9篇
  1994年   8篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   9篇
  1988年   3篇
  1986年   4篇
  1985年   10篇
  1984年   3篇
  1983年   2篇
  1980年   2篇
  1977年   2篇
  1974年   2篇
  1973年   3篇
  1971年   2篇
  1970年   2篇
  1967年   2篇
  1966年   2篇
  1955年   1篇
  1950年   1篇
排序方式: 共有2924条查询结果,搜索用时 15 毫秒
41.
The major aims of this study were to investigate the effect of an Ironman triathlon on DNA migration in the single cell gel electrophoresis assay, apoptosis and necrosis in the cytokinesis-block micronucleus cytome assay with lymphocytes and on changes of total antioxidant capacity in plasma. Blood samples were taken 2 days (d) before, within 20 min, 1 d, 5 d and 19 d post-race. The level of strand breaks decreased (p<0.05) immediately after the race, then increased (p<0.01) 1 d post-race and declined (p<0.01) until 19 d post-race. Apoptotic and necrotic cells decreased (p<0.01) and the total antioxidant status increased (p<0.01) immediately after the race. The results indicate that ultra-endurance exercise does not cause prolonged DNA damage in well-trained male athletes.  相似文献   
42.

Introduction

Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model.

Methods

Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material.

Results

Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures. Although TGF-β1 stimulation showed protective effects on matrix integrity, effects on other parameters were limited.

Conclusions

The present bovine cartilage punch model represents a robust, reproducible and highly suitable tool for the long-term culture of cartilage, maintaining matrix integrity and homoeostasis. As an alternative to animal studies, this model may closely reflect early stages of cartilage regeneration, allowing the evaluation of promising biomaterials with/without chondrogenic factors.  相似文献   
43.
Recent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km?1) than spatial turnover in growing‐season GiT (0.18 °C km?1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.  相似文献   
44.
45.
46.
Cadherins, Ca2+-dependent adhesion molecules, are crucial for cell-cell junctions and remodeling. Cadherins form inter-junctional lattices by the formation of both cis and trans dimers. Here, we directly visualize and quantify the spatiotemporal dynamics of wild-type and dimer mutant N-cadherin interactions using time-lapse imaging of junction assembly, disassembly and a FRET reporter to assess Ca2+-dependent interactions. A trans dimer mutant (W2A) and a cis mutant (V81D/V174D) exhibited an increased Ca2+-sensitivity for the disassembly of trans dimers compared to the WT, while another mutant (R14E) was insensitive to Ca2+-chelation. Time-lapse imaging of junction assembly and disassembly, monitored in 2D and 3D (using cellular spheroids), revealed kinetic differences in the different mutants as well as different behaviors in the 2D and 3D environment. Taken together, these data provide new insights into the role that the cis and trans dimers play in the dynamic interactions of cadherins.  相似文献   
47.
The selenoprotein glutathione peroxidase-2 (GPx2) appears to have a dual role in carcinogenesis. While it protected mice from colon cancer in a model of inflammation-triggered carcinogenesis (azoxymethane and dextran sodium sulfate treatment), it promoted growth of xenografted tumor cells. Therefore, we analyzed the effect of GPx2 in a mouse model mimicking sporadic colorectal cancer (azoxymethane-treatment only). GPx2-knockout (KO) and wild-type (WT) mice were adjusted to an either marginally deficient (−Se), adequate (+Se), or supranutritional (++Se) selenium status and were treated six times with azoxymethane (AOM) to induce tumor development. In the −Se and ++Se groups, the number of tumors was significantly lower in GPx2-KO than in respective WT mice. On the +Se diet, the number of dysplastic crypts was reduced in GPx2-KO mice. This may be explained by more basal and AOM-induced apoptotic cell death in GPx2-KO mice that eliminates damaged or pre-malignant epithelial cells. In WT dysplastic crypts GPx2 was up-regulated in comparison to normal crypts which might be an attempt to suppress apoptosis. In contrast, in the +Se groups tumor numbers were similar in both genotypes but tumor size was larger in GPx2-KO mice. The latter was associated with an inflammatory and tumor-promoting environment as obvious from infiltrated inflammatory cells in the intestinal mucosa of GPx2-KO mice even without any treatment and characterized as low-grade inflammation. In WT mice the number of tumors tended to be lowest in +Se compared to −Se and ++Se feeding indicating that selenium might delay tumorigenesis only in the adequate status. In conclusion, the role of GPx2 and presumably also of selenium depends on the cancer stage and obviously on the involvement of inflammation.  相似文献   
48.
49.
To promote cancer research and to develop innovative therapies, refined pre-clinical mouse tumor models that mimic the actual disease in humans are of dire need. A number of neoplasms along the B cell lineage are commonly initiated by a translocation recombining c-myc with the immunoglobulin heavy-chain gene locus. The translocation is modeled in the C.129S1-Ighatm1(Myc)Janz/J mouse which has been previously engineered to express c-myc under the control of the endogenous IgH promoter. This transgenic mouse exhibits B cell hyperplasia and develops diverse B cell tumors. We have isolated tumor cells from the spleen of a C.129S1-Ighatm1(Myc)Janz/J mouse that spontaneously developed a plasmablastic lymphoma-like disease. These cells were cultured, transduced to express eGFP and firefly luciferase, and gave rise to a highly aggressive, transplantable B cell lymphoma cell line, termed IM380. This model bears several advantages over other models as it is genetically induced and mimics the translocation that is detectable in a number of human B cell lymphomas. The growth of the tumor cells, their dissemination, and response to treatment within immunocompetent hosts can be imaged non-invasively in vivo due to their expression of firefly luciferase. IM380 cells are radioresistant in vivo and mice with established tumors can be allogeneically transplanted to analyze graft-versus-tumor effects of transplanted T cells. Allogeneic hematopoietic stem cell transplantation of tumor-bearing mice results in prolonged survival. These traits make the IM380 model very valuable for the study of B cell lymphoma pathophysiology and for the development of innovative cancer therapies.  相似文献   
50.
Studies investigating dynamic susceptibility contrast magnetic resonance imaging-determined relative cerebral blood volume (rCBV) maps as a metric of treatment response assessment have generated conflicting results. We evaluated the potential of various analytical techniques to predict survival of patients with glioma treated with chemoradiation. rCBV maps were acquired in patients with high-grade gliomas at 0, 1, and 3 weeks into chemoradiation therapy. Various analytical techniques were applied to the same cohort of serial rCBV data for early assessment of survival. Three different methodologies were investigated: 1) percentage change of whole tumor statistics (i.e., mean, median, and percentiles), 2) physiological segmentation (low rCBV, medium rCBV, or high rCBV), and 3) a voxel-based approach, parametric response mapping (PRM). All analyses were performed using the same tumor contours, which were determined using contrast-enhanced T1-weighted and fluid attenuated inversion recovery images. The predictive potential of each response metric was assessed at 1-year and overall survival. PRM was the only analytical approach found to generate a response metric significantly predictive of patient 1-year survival. Time of acquisition and contour volume were not found to alter the sensitivity of the PRM approach for predicting overall survival. We have demonstrated the importance of the analytical approach in early response assessment using serial rCBV maps. The PRM analysis shows promise as a unified early and robust imaging biomarker of treatment response in patients diagnosed with high-grade gliomas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号