首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   5篇
  2021年   1篇
  2017年   1篇
  2016年   2篇
  2015年   9篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2000年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1980年   2篇
  1976年   1篇
排序方式: 共有72条查询结果,搜索用时 406 毫秒
61.
62.
The S1P(2) receptor is a member of a family of G protein-coupled receptors that bind the extracellular sphingolipid metabolite sphingosine 1-phosphate with high affinity. The receptor is widely expressed and linked to multiple G protein signaling pathways, but its physiological function has remained elusive. Here we have demonstrated that S1P(2) receptor expression is essential for proper functioning of the auditory and vestibular systems. Auditory brainstem response analysis revealed that S1P(2) receptor-null mice were deaf by one month of age. These null mice exhibited multiple inner ear pathologies. However, some of the earliest cellular lesions in the cochlea were found within the stria vascularis, a barrier epithelium containing the primary vasculature of the inner ear. Between 2 and 4 weeks after birth, the basal and marginal epithelial cell barriers and the capillary bed within the stria vascularis of the S1P(2) receptor-null mice showed markedly disturbed structures. JTE013, an S1P(2) receptor-specific antagonist, blocked the S1P-induced vasoconstriction of the spiral modiolar artery, which supplies blood directly to the stria vascularis and protects its capillary bed from high perfusion pressure. Vascular disturbance within the stria vascularis is a potential mechanism that leads to deafness in the S1P(2) receptor-null mice.  相似文献   
63.
Pertussis toxin (PTx), an AB5 toxin and major virulence factor of the whooping cough-causing pathogen Bordetella pertussis, has been shown to affect the blood-brain barrier. Dysfunction of the blood-brain barrier may facilitate penetration of bacterial pathogens into the brain, such as Escherichia coli K1 (RS218). In this study, we investigated the influence of PTx on blood-brain barrier permissiveness to E. coli infection using human brain-derived endothelial HBMEC and TY10 cells as in vitro models. Our results indicate that PTx acts at several key points of host cell intracellular signaling pathways, which are also affected by E. coli K1 RS218 infection. Application of PTx increased the expression of the pathogen binding receptor gp96. Further, we found an activation of STAT3 and of the small GTPase Rac1, which have been described as being essential for bacterial invasion involving host cell actin cytoskeleton rearrangements at the bacterial entry site. In addition, we showed that PTx induces a remarkable relocation of VE-cadherin and β-catenin from intercellular junctions. The observed changes in host cell signaling molecules were accompanied by differences in intracellular calcium levels, which might act as a second messenger system for PTx. In summary, PTx not only facilitates invasion of E. coli K1 RS218 by activating essential signaling cascades; it also affects intercellular barriers to increase paracellular translocation.  相似文献   
64.

Background

An important goal of Zebu breeding programs is to improve reproductive performance. A major problem faced with the genetic improvement of reproductive traits is that recording the time for an animal to reach sexual maturity is costly. Another issue is that accurate estimates of breeding values are obtained only a long time after the young bulls have gone through selection. An alternative to overcome these problems is to use traits that are indicators of the reproductive efficiency of the herd and are easier to measure, such as age at first calving. Another problem is that heifers that have conceived once may fail to conceive in the next breeding season, which increases production costs. Thus, increasing heifer’s rebreeding rates should improve the economic efficiency of the herd. Response to selection for these traits tends to be slow, since they have a low heritability and phenotypic information is provided only later in the life of the animal. Genome-wide association studies (GWAS) are useful to investigate the genetic mechanisms that underlie these traits by identifying the genes and metabolic pathways involved.

Results

Data from 1853 females belonging to the Agricultural Jacarezinho LTDA were used. Genotyping was performed using the BovineHD BeadChip (777 962 single nucleotide polymorphisms (SNPs)) according to the protocol of Illumina - Infinium Assay II ® Multi-Sample HiScan with the unit SQ ™ System. After quality control, 305 348 SNPs were used for GWAS. Forty-two and 19 SNPs had a Bayes factor greater than 150 for heifer rebreeding and age at first calving, respectively. All significant SNPs for age at first calving were significant for heifer rebreeding. These 42 SNPs were next or within 35 genes that were distributed over 18 chromosomes and comprised 27 protein-encoding genes, six pseudogenes and two miscellaneous noncoding RNAs.

Conclusions

The use of Bayes factor to determine the significance of SNPs allowed us to identify two sets of 42 and 19 significant SNPs for heifer rebreeding and age at first calving, respectively, which explain 11.35 % and 6.42 % of their phenotypic variance, respectively. These SNPs provide relevant information to help elucidate which genes affect these traits.  相似文献   
65.
66.
Hypermethylation is an important mechanism for the dynamic regulation of gene expression, necessary for metastasizing tumour cells. Our aim is to identify methylation tumour markers that have a predictive value for the presence of regional lymph node metastases in patients with oral and oropharyngeal squamous cell carcinoma (OOSCC). Significantly differentially expressed genes were retrieved from four reported microarray expression profiles comparing pN0 and pN+ head-neck tumours, and one expression array identifying functionally hypermethylated genes. Additional metastasis-associated genes were included from the literature. Thus genes were selected that influence the development of nodal metastases and might be regulated by methylation. Methylation-specific PCR (MSP) primers were designed and tested on 8 head-neck squamous cell carcinoma cell lines and technically validated on 10 formalin-fixed paraffin-embedded (FFPE) OOSCC cases. Predictive value was assessed in a clinical series of 70 FFPE OOSCC with pathologically determined nodal status. Five out of 28 methylation markers (OCLN, CDKN2A, MGMT, MLH1 and DAPK1) were frequently differentially methylated in OOSCC. Of these, MGMT methylation was associated with pN0 status (P = 0.02) and with lower immunoexpression (P = 0.02). DAPK1 methylation was associated with pN+ status (P = 0.008) but did not associate with protein expression. In conclusion, out of 28 candidate genes, two (7%) showed a predictive value for the pN status. Both genes, DAPK1 and MGMT, have predictive value for nodal metastasis in a clinical group of OOSCC. Therefore DNA methylation markers are capable of contributing to diagnosis and treatment selection in OOSCC. To efficiently identify additional new methylation markers, genome-wide methods are needed.  相似文献   
67.
The predicted increase in the frequency and magnitude of extreme heat spikes under future climate can reduce rice yields significantly. Rice sensitivity to high temperatures during the reproductive stage is well documented while the same during the vegetative stage is more speculative. Hence, to identify and characterize novel heat‐tolerant donors for both the vegetative and reproductive stages, 71 rice accessions, including approximately 75% New Rice for Africa (NERICAs), were phenotyped across field experiments during summer seasons in Delhi, India, and in a controlled environment study at International Rice Research Institute , Philippines. NERICA‐L‐44 (NL‐44) recorded high seedling survival (52%) and superior growth and greater reproductive success exposed to 42.2°C (sd ± 2.3) under field conditions. NL‐44 and the heat‐tolerant check N22 consistently displayed lower membrane damage and higher antioxidant enzymes activity across leaves and spikelets. NL‐44 recorded 50–60% spikelet fertility, while N22 recorded 67–79% under controlled environment temperature of 38°C (sd ±1.17), although both had about 87% fertility under extremely hot field conditions. N22 and NL‐44, exposed to heat stress (38°C), had similar pollen germination percent and number of pollen tubes reaching the ovary. NL‐44 maintained low hydrogen peroxide production and non‐photochemical quenching (NPQ) with high photosynthesis while N22 avoided photosystem II damage through high NPQ under high‐temperature stress. NL‐44 with its reproductive stage resilience to extreme heat stress, better antioxidant scavenging ability in both vegetative tissue and spikelets and superior yield and grain quality is identified as a novel donor for increasing heat tolerance at both the vegetative and reproductive stages in rice.  相似文献   
68.
69.

Background  

The initial steps of stem Leydig cell differentiation into steroid producing progenitor cells are thought to take place independent of luteinizing hormone (LH), under the influence of locally produced factors such as leukaemia inhibitory factor (LIF), platelet derived growth factor A and stem cell factor. For the formation of a normal sized Leydig cell population in the adult testis, the presence of LH appears to be essential.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号