首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1126篇
  免费   75篇
  国内免费   3篇
  2023年   3篇
  2022年   7篇
  2021年   16篇
  2020年   16篇
  2019年   25篇
  2018年   26篇
  2017年   15篇
  2016年   38篇
  2015年   44篇
  2014年   50篇
  2013年   65篇
  2012年   96篇
  2011年   100篇
  2010年   68篇
  2009年   54篇
  2008年   70篇
  2007年   79篇
  2006年   56篇
  2005年   61篇
  2004年   59篇
  2003年   42篇
  2002年   45篇
  2001年   15篇
  2000年   13篇
  1999年   10篇
  1998年   12篇
  1997年   7篇
  1996年   13篇
  1995年   12篇
  1994年   3篇
  1992年   5篇
  1991年   4篇
  1989年   3篇
  1984年   3篇
  1983年   2篇
  1982年   10篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1969年   5篇
  1968年   4篇
  1966年   2篇
  1965年   2篇
排序方式: 共有1204条查询结果,搜索用时 15 毫秒
41.
42.
43.
Sexual reproduction of flowering plants depends on delivery of the sperm to the egg, which occurs through a long, polarized projection of a pollen cell, called the pollen tube. The pollen tube grows exclusively at its tip, and this growth is distinguished by very fast rates and reaches extended lengths. Thus, one of the most fascinating aspects of pollen biology is the question of how enough cell wall material is produced to accommodate such rapid extension of pollen tube, and how the cell wall deposition and structure are regulated to allow for rapid changes in the direction of growth. This review discusses recent advances in our understanding of the mechanism of pollen tube growth, focusing on such basic cellular processes as control of cell shape and growth by a network of cell wall-modifying enzymes, molecular motor-mediated vesicular transport, and intracellular signaling by localized gradients of second messengers.  相似文献   
44.
The attachment ability of insects on surfaces are associated not only with the micro- and nanostructure of the adhering part of an attachment device, but also with the global scale kinematics responsible for contact formation and release. In the present study, the locomotory techniques of several representatives of insects from four different orders (Orthoptera, Heteroptera, Coleoptera, and Hymenoptera), possessing different types of attachment structures, are described. The study is based on video recordings of insects walking on a flat surface and on cylindrical rods of various thickness, imitating plant stems. Attachment devices of tarsi and pretarsi were visualized using Scanning Electron Microscopy. The results show a different manner in the use of adhesive structures on substrates with various curvatures. Insects bearing attachment pads on proximal tarsomeres usually touch flat and curved substrates using all tarsomeres, whereas insects with their attachment devices on the distal tarsomeres usually walk on flat surfaces using the distal tarsomeres of the overextended tarsus. On substrates, with diameters comparable to or larger than the tarsus length, insects walk above the stem by clasping the stem with the bent tarsi. On thin stems, insects clasp the stem between their tarsi and hang under the stem. Thus, on thin and thick rods, forces applied to attachment organs act in opposite directions. There are two methods of leg positioning for walking on a rough flat substrate. In the first case, the tarsus is straightened and the rough substrate is gripped between the claws and the proximal complex of attachment devices (tarsal euplantulae, fossulae spongiosa, and terminal spurs of tibiae). In the second case the tibia does not touch the substrate; the insect is supported only by distal tarsomeres. The tarsus is in an overextended condition. On rods, with diameters comparable to or larger than the tarsus length, insects walk by clasping the stem with the bent tarsi. This posture is characteristic for the majority of insects independent of the tarsal position they normally use while walking on a plane. If the rod’s diameter is smaller than the tarsus length, walking insects usually clutch it between contralateral tarsi. Using such a posture they are supported by interlocking or by strong friction, generated by attachment devices of the proximal tarsomeres, and do not use attachment devices of the pretarsus. Contact with the substrate is reinforced due to the coordinated contralateral clutch using all supporting legs. It is concluded that the use of different types of attachment structures correlates with locomotory techniques. Handling Editor: Heikki Hokkanen  相似文献   
45.
Physicochemical models of signaling pathways are characterized by high levels of structural and parametric uncertainty, reflecting both incomplete knowledge about signal transduction and the intrinsic variability of cellular processes. As a result, these models try to predict the dynamics of systems with tens or even hundreds of free parameters. At this level of uncertainty, model analysis should emphasize statistics of systems-level properties, rather than the detailed structure of solutions or boundaries separating different dynamic regimes. Based on the combination of random parameter search and continuation algorithms, we developed a methodology for the statistical analysis of mechanistic signaling models. In applying it to the well-studied MAPK cascade model, we discovered a large region of oscillations and explained their emergence from single-stage bistability. The surprising abundance of strongly nonlinear (oscillatory and bistable) input/output maps revealed by our analysis may be one of the reasons why the MAPK cascade in vivo is embedded in more complex regulatory structures. We argue that this type of analysis should accompany nonlinear multiparameter studies of stationary as well as transient features in network dynamics.  相似文献   
46.
47.
Heparin belongs to glycosaminoglycans (GAGs), a class of periodic linear anionic polysaccharides, which are functionally important components of the extracellular matrix owing to their interactions with various protein targets. Heparin is known to be involved in many cell signaling processes, while the experimental data available for heparin are significantly more abundant than for other GAGs. At the same time, the length and conformational flexibility of the heparin represent major challenges for its theoretical analysis. Coarse-grained (CG) approaches, which enable us to extend the size- and time-scale by orders of magnitude owing to reduction of system representation, appear, therefore, to be useful in simulating these systems. In this work, by using umbrella-sampling molecular dynamics simulations, we derived and parameterized the CG backbone-local potentials of heparin chains and the orientational potentials for the interactions of heparin with amino acid side chains to be further included in the physics-based Unified Coarse-Grained Model of biological macromolecules. With these potentials, simulations of extracellular matrix processes where both heparin and multiple proteins participate will be possible.  相似文献   
48.
Plant Molecular Biology - The knowledge of substrate specificity of XET enzymes is important for the general understanding of metabolic pathways to challenge the established notion that these...  相似文献   
49.
Jaracz S  Malik S  Nakanishi K 《Phytochemistry》2004,65(21):2897-2902
Ginkgolides A, B, C and J, together with bilobalide, are unique terpenoid components of the Ginkgo biloba tree. Due to similar chemical properties, their separation is quite tedious. We have developed an efficient and rapid protocol for separation of individual ginkgolides and bilobalide from G. biloba extracts. The procedure takes advantage of enhanced susceptibility of ginkgolides B and C to benzylation and the ease of separation of these products from ginkgolides A and J which do not react. The protocol is applicable to the previously reported enriched extracts prepared from G. biloba leaves. A single chromatographic step prior to benzylation provides bilobalide and mixture of ginkgolides A, B, C, and J. After benzylation, the individual ginkgolides are separated by chromatography.  相似文献   
50.
MHC class I molecules are heterotrimeric complexes composed of heavy chain, 2-microglobulin (2m) and short peptide. This trimeric complex is generated in the endoplasmic reticulum (ER), where a peptide loading complex (PLC) facilitates transport from the cytosol and binding of the peptide to the preassembled ER resident heavy chain/2m dimers. Association of mouse MHC class I heavy chain with 2m is characterized by allelic differences in the number and/or positions of amino acid interactions. It is unclear, however, whether all alleles follow common binding patterns with minimal contributions by allele-specific contacts, or whether essential contacts with 2m are different for each allele. While searching for the PLC binding site in the 3 domain of the mouse MHC class I molecule H-2Db, we unexpectedly discovered a site critical for binding mouse, but not human, 2m. Interestingly, amino acids in the corresponding region of another MHC class I heavy chain allele do not make contacts with the mouse 2m. Thus, there are allelic differences in the modes of binding of 2m to the heavy chain of MHC class I.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号