首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110164篇
  免费   7571篇
  国内免费   17篇
  117752篇
  2023年   564篇
  2022年   439篇
  2021年   1028篇
  2020年   943篇
  2019年   970篇
  2018年   2605篇
  2017年   2354篇
  2016年   3294篇
  2015年   4921篇
  2014年   4988篇
  2013年   6698篇
  2012年   8224篇
  2011年   7715篇
  2010年   4915篇
  2009年   3632篇
  2008年   6282篇
  2007年   6224篇
  2006年   5679篇
  2005年   5352篇
  2004年   4990篇
  2003年   4601篇
  2002年   4258篇
  2001年   2277篇
  2000年   2254篇
  1999年   1952篇
  1998年   797篇
  1997年   616篇
  1996年   553篇
  1995年   566篇
  1994年   570篇
  1993年   435篇
  1992年   1283篇
  1991年   1209篇
  1990年   1059篇
  1989年   1017篇
  1988年   947篇
  1987年   811篇
  1986年   732篇
  1985年   822篇
  1984年   709篇
  1983年   606篇
  1982年   465篇
  1981年   458篇
  1979年   609篇
  1978年   472篇
  1977年   423篇
  1976年   416篇
  1975年   464篇
  1974年   496篇
  1973年   490篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
 Using recombinant DNA techniques, an Aspergillus nidulans multicopy transformant for the gene xlnB coding for the minor X24 xylanase has been constructed. When grown on glucose as sole carbon source this transformant secretes 114 U of xylanase (mg protein)-1. In this culture condition, X24 is the only xylanase secreted and the predominant protein in the culture filtrate. This strategy has been used to purify the X24 enzyme to homogeneity. The purified xylanase showed a single band on sodium dodecyl sulphate/ polyacrylamide gel electrophoresis with a molecular mass of 24 kDa and had an isoelectric point of approximately 3.5. The enzyme was a non-debranching endo-1,4-β-xylan xylanohydrolase highly specific for xylans and showed optimal activity at pH 5.5 and 52°C. The X24 xylanase had a Michaelis constant, K m, of 12.43 mg oat spelt xylan ml-1 and a V max of 1639 μmol min-1 (mg protein)-1. Received: 17 May 1995/Received last revision: 25 September 1995/Accepted: 29 September 1995  相似文献   
992.
 The effect of the addition of oleuropein (OLP) and NaCl on the growth and the DL-lactic acid production of Lactobacillus plantarum DSM 10492 has been investigated by using an unconventional medium. The growth of L. plantarum was not inhibited by the addition of increasing amounts of untreated OLP in the presence or absence of glucose. However, bacterial cells grew in quantity slightly with OLP alone. The increased addition of NaCl was associated with a delay in growth. Moreover, there was no growth with 8% NaCl. The addition of both NaCl and OLP resulted in growth inhibition, and the survival of cells decreased strongly. The main fermentation product was DL-lactic acid, but acetic acid was also detected after a prolonged incubation. L. plantarum produced DL-lactic acid in the presence of OLP alone but its formation decreased with increasing levels of OLP. On the other hand, heat-treated OLP had a bactericidal effect. Received: 16 October 1995/Received last revision: 5 February 1996/Accepted: 12 February 1996  相似文献   
993.
 Physiological effects of deficiency of pantothenate, a necessary precursor in the synthesis of coenzyme A, were studied using the yeast strain Saccharomyces cerevisiae CBS 8066. Cells were grown on defined media in anaerobic batch cultures with glucose (50 g/l) as the carbon and energy source. Batch cultures containing more than 60 μg/l pantothenate showed no significant differences with respect to growth rates and product yields. However, with an initial pantothenate concentration of 30 μg/l, the average glucose consumption rate was 50% lower than in rich medium and, at even lower concentrations of pantothenate, the culture did not consume all the glucose in the medium. Furthermore, pantothenate deficiency caused the acetate and pyruvate yields to increase and the biomass yield to decrease, compared to the yields in pantothenate-rich medium. The increased acetate formation could be counteracted by initial addition of acetate to the medium, and thereby the glycerol yield could be decreased. An initial addition of acetate of 1.6 g/l to pantothenate-deficient medium (30 μg/l) caused a 35% decrease in glycerol yield and a 6% increase in ethanol yield. Furthermore, the time required for complete conversion of the glucose decreased by 40%. Acetate addition affected the acetate and glycerol yields in a similar way in pantothenate-rich medium (1000 μg/l) also. Received: 27 December 1995/Received revision: 3 May 1996/Accepted: 9 May 1996  相似文献   
994.
The organization of the genes of the penicillin cluster has been studied in three different mutants of P. chrysogenum impaired in penicillin biosynthesis. The three blocked mutants (derived from the parental strain P. chrysogenum Bb-1) lacked the genes pcbAB, pcbC and penDE of the penicillin biosynthetic pathway and were unable to form isopenicillin N synthase and isopenicillin N acyltransferase. All strains were identified as P. chrysogenum derivatives by fingerprinting analysis with (GTG)n as a probe. The borders of the deleted region were cloned and sequenced, showing the same junction point in the three mutants. The deleted DNA region was found to be identical to that described in P. chrysogenum npe10. The frequent deletion of the pen gene cluster at this point may indicate that this cluster is located in an unstable genetic region, flanked by hot spots of recombination, that is easily lost by mutagen-induced recombination.  相似文献   
995.
Living yeast cells can be selectively stained with the lipophilic cationic cyanine dye DiOC6(3) in a mitochondrial membrane potential-dependent manner. Our study extends the use of flow cytometric analysis and sorting to DiOC6(3)-stained yeast cells. Experimental conditions were developed that prevented the toxic side effect of the probe and gave a quantitative correlation between fluorescence and mitochondrial membrane potential, without any staining of other membranes. The localization of the fluorochrome was checked by confocal microscopy and image cytometry. The mitochondrial membrane alterations were also tested through cardiolipin staining with nonyl acridine orange. Differences in light scattering and in fluorescence were detected in mutants (rho-, rho degrees, mit-, or pet-) and wild-type (rho+mit+) populations of yeast. The dye uptake of respiratory-deficient yeast strains was significantly reduced as compared to that of the wild-type. Application of an uncoupler (mCICCP), which collapsed the mitochondrial membrane potential (alphapsi(m)), led to a drastic reduction of the dye uptake. It was observed that a decrease in deltapsi(m), was usually correlated with a decrease in cardiolipin stainability by nonyl acridine orange (NAO). Quantitative flow cytometry is a fast and reproducible technique for rapid screening of yeast strains that might be suspected of respiratory dysfunction and/or mitochondrial structural changes. We give evidence that it is an adequate method to characterize and isolate respiratory mutants through sorting procedure, with selective enrichment of the population studied in respiring or non-respiring yeast cells. Confocal microscopy and image cytometry corroborate the flow cytometry results.  相似文献   
996.
The majora2–6 sialoglycoproteins in detergent-extracts of Kurloff cells were purified by anion-exchange andSambucus nigra agglutinin-affinity chromatographies. The similar ultrastructural localisations of (1)S. nigra agglutinin-gold conjugates and (2) acid phosphatase activities on the Kurloff body and particularly on its myelin figures indicated that the majora2-6 sialoglycoproteins of the Kurloff cell had acid phosphatase activity. Two-dimensional electrophoresis showed that these tartrate-sensitive phosphatases corresponded to 2 acidic (pI 3.4–3.7) polypeptides of 36 and 34 kDa. Hydrolysis with peptide-N-glycosidases F gave a 33 kDa apoprotein rich in alanine, glutamic acid, tyrosine and lysin. A lectin-affinity study demonstrated that they contained hybrid type bisected and fucosylatedN-linked oligosaccharides. Cytotoxic properties were previously attributed to Kurloff cells and other studies suggested that not only acid phosphatases but alsoa2-6-linked sialic acid residues themselves may participate in natural killer activity.  相似文献   
997.
Denaturation and aggregation of-lactalbumin at high pressure (up to 10 kbar, 1000 MPa) were studied by means of circular dichroism, gel-permeation chromatography, sodium dodecyl sulfate and gel electrophoresis. It was found that the unfolding of-lactalbumin at high pressure is reversible even in basic pH and at a protein concentration as large as 10%. In these conditions only a negligible fraction of the protein is denatured irreversibly and aggregates. The rate of aggregation of-lactalbumin at high pressure increases significantly in the presence of low-molecular reducing agents such as cysteine, 2-mercaptoethanol, and dithiothreitol. Maximal yield of-lactalbumin oligomerization (over 90%) was achieved in the presence of cysteine at the molar cysteine/protein ratioq=2 and atpH 8.5. Apparent molecular weight of the obtained oligomers was over 500 kDa. It was shown that the size distribution of oligomers can be modulated by varyingpH and reducing agent. The size distribution shifts in the direction of very large, poorly soluble particles whenpH decreases. Maximal content of the insoluble fraction (about 30%) can be reached at pH 5.5 when cysteine (q=2) is used as reducing agent. The oligomers of-lactalbumin are stabilized mainly by nonnative interchain disulfide bridges. Circular dichroism measurements point to an additional mechanism of cohesion of polypeptide chains in the oligomers, which is formation of intermolecular-sheets.  相似文献   
998.
Signalling by protein kinase C isoforms in the heart   总被引:11,自引:0,他引:11  
Understanding transmembrane signalling process is one of the major challenge of the decade. In most tissues, since Fisher and Krebs's discovery in the 1950's, protein phosphorylation has been widely recognized as a key event of this cellular function. Indeed, binding of hormones or neurotransmitters to specific membrane receptors leads to the generation of cytosoluble second messengers which in turn activate a specific protein kinase. Numerous protein kinases have been so far identified and roughly classified into two groups, namely serine/threonine and tyrosine kinases on the basis of the target amino acid although some more recently discovered kinases like MEK (or MAP kinase kinase) phosphorylate both serine and tyrosine residues.Protein kinase C is a serine/threonine kinase that was first described by Takai et al. [1] as a Ca- and phospholipid-dependent protein kinase. Later on, Kuo et al. [2] found that PKC was expressed in most tissues including the heart. The field of investigation became more complicated when it was found that the kinase is not a single molecular entity and that several isoforms exist. At present, 12 PKC isoforms and other PKC-related kinases [3] were identified in mammalian tissues. These are classified into three groups. (1) the Ca-activated -, -,and -PKCs which display a Ca-binding site (C2); (2) the Ca-insensitive -, -, -, -, and -PKCs. The kinases that belong to both of these groups display two cystein-rich domains (C1) which bind phorbol esters (for recent review on PKC structure, see [4]). (3) The third group was named atypical PKCs and include , , and -PKCs that lack both the C2 and one cystein-rich domain. Consequently, these isoforms are Ca-insensitive and cannot be activated by phorbol esters [5]. In the heart. evidence that multiple PKC isoforms exist was first provided by Kosaka et al. [6] who identified by chromatography at least two PKC-related isoenzymes. Numerous studies were thus devoted to the biochemical characterization of these isoenzymes (see [7] for review on cardiac PKCs) as well as to the identification of their substrates.This overview aims at updating the present knowledge on the expression, activation and functions of PKC isoforms in cardiac cells. (Mol Cell Biochem 157: 65–72, 1996)  相似文献   
999.
The major protein in the sarcoplasmic reticulum (SR) membrane is the Ca2+ transporting ATPase which carries out active Ca2+ pumping at the expense of ATP hydrolysis. The aim of this work was to elucidate the mechanisms by which oxidative stress induced by Fenton's reaction (Fe2+ + H2O2 HO· + OH+ Fe3+) alters the function of SR. ATP hydrolysis by both SR vesicles (SRV) and purified ATPase was inhibited in a dose-dependent manner in the presence of 0–1.5 MM H2O2 plus 50 M Fe2+ and 6 mM ascorbate. Ca2+ uptake carried out by the Ca2+-ATPase in SRV was also inhibited in parallel. The inhibition of hydrolysis and Ca2+ uptake was not prevented by butylhydroxytoluene (BHT) at concentrations which significantly blocked formation of thiobarbituric acid-reactive substances (TBARS), suggesting that inhibition of the ATPase was not due to lipid peroxidation of the SR membrane. In addition, dithiothreitol (DTT) did not prevent inhibition of either ATPase activity or Ca2+ uptake, suggesting that inhibition was not related to oxidation of ATPase thiols. The passive efflux of 45Ca2+ from pre-loaded SR vesicles was greatly increased by oxidative stress and this effect could be only partially prevented (ca 20%) by addition of BHT or DTT. Trifluoperazine (which specifically binds to the Ca2+-ATPase, causing conformational changes in the enzyme) fully protected the ATPase activity against oxidative damage. These results suggest that the alterations in function observed upon oxidation of SRV are mainly due to direct effects on the Ca2+-ATPase. Electrophoretic analysis of oxidized Ca2+-ATPase revealed a decrease in intensity of the silver-stained 110 kDa Ca2+-ATPase band and the appearance of low molecular weight peptides (MW < 100 kDa) and high molecular weight protein aggregates. Presence of DTT during oxidation prevented the appearance of protein aggregates and caused a simultaneous increase in the amount of low molecular weight peptides. We propose that impairment of function of the Ca2+-pump may be related to aminoacid oxidation and fragmentation of the protein.Abbreviations AcP acetylphosphate - BHT butylhydroxytoluene - DTT dithiothreitol - Hepes 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - SDS sodium dodecyl sulfate - SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate - SR sarcoplasmic reticulum - SRV sarcoplasmic reticulum vesicles - TBA thiobarbituric acid - TBARS thiobarbituric acid-reactive substances - TFP trifluoperazine  相似文献   
1000.
Applications of intrinsic fluorescence measurements in the study of Ca2+-transport ATPases are reviewed. Since the initial reports showing that the fluorescence emission was sensitive to Ca2+ binding, a substantial amount of work has focused on the use of both steady-state and time-resolved fluorescence spectroscopy to investigate structure-function relationships in sarcoplasmic reticulum and plasma membrane Ca2+-ATPases. These studies have revealed ligand-induced conformational changes, as well as provided information on protein-protein, protein-solvent and/or protein-lipid interactions in different functional states of these proteins. The main results of these studies, as well as possible future prospects are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号