首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   3篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   8篇
  2011年   2篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  1994年   1篇
  1991年   1篇
排序方式: 共有44条查询结果,搜索用时 0 毫秒
41.
We had found previously that neurotrophin-3 (NT-3) is a potent stimulator of cAMP-response element binding protein (CREB) phosphorylation in cultured oligodendrocyte progenitors. Here, we show that CREB phosphorylation in these cells is also highly stimulated by sphingosine-1-phosphate (S1P), a sphingolipid metabolite that is known to be a potent mediator of numerous biological processes. Moreover, CREB phosphorylation in response to NT-3 involves sphingosine kinase 1 (SphK1), the enzyme that synthesizes S1P. Immunocytochemistry and confocal microscopy indicated that NT-3 induces translocation of SphK1 from the cytoplasm to the plasma membrane of oligodendrocytes, a process accompanied by increased SphK1 activity in the membrane fraction where its substrate sphingosine resides. To examine the involvement of SphK1 in NT-3 function, SphK1 expression was down-regulated by treatment with SphK1 sequence-specific small interfering RNA. Remarkably, the capacity of NT-3 to protect oligodendrocyte progenitors from apoptotic cell death induced by growth factor deprivation was abolished by down-regulating the expression of SphK1, as assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Altogether, these results suggest that SphK1 plays a crucial role in the stimulation of oligodendrocyte progenitor survival by NT-3, and demonstrate a functional link between NT-3 and S1P signaling, adding to the complexity of mechanisms that modulate neurotrophin function and oligodendrocyte development.  相似文献   
42.
We studied free radical generation, lipid peroxidation and the levels of essential fatty acids and of their metabolites in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Both superoxide and hydrogen peroxide generation by peripheral leukocytes but not malondialdehyde levels, as measured by thiobarbituric acid assay, were found to be significantly enhanced both in RA and SLE. Fatty acid analysis of the plasma PL fraction revealed that both LA and ALA metabolites are significantly decreased in RA and SLE compared to controls. These results suggest that essential fatty acid metabolism is altered in RA and SLE.  相似文献   
43.
Thermosensitive transient receptor potential (thermo TRP) channels are important for sensory transduction. Among them, TRPV2 has an interesting characteristic of being activated by very high temperature (>52 °C). In addition to the heat sensor function, TRPV2 also acts as a mechanosensor, an osomosensor and a lipid sensor. It has been reported that TRPV2 is expressed in heart, intestine, pancreas and sensory nerves. In the central nervous system, neuronal TRPV2 expression was reported, however, glial expression and the precise roles of TRPV2 have not been determined. To explore the functional expression of TRPV2 in astrocytes, the expression was determined by histological and physiological methods. Interestingly, TRPV2 expression was detected in plasma membrane of astrocytes, and the astrocytic TRPV2 was activated by very high temperature (>50 °C) consistent with the reported characteristic. We revealed that the astrocytic TRPV2 was also activated by lysophosphatidylcholine, a known endogenous lipid ligand for TRPV2, suggesting that astrocytic TRPV2 might regulate neuronal activities in response to lipid metabolism. Thus, for the first time we revealed that TRPV2 is functionally expressed in astrocytes in addition to neurons.  相似文献   
44.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号