首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   19篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   7篇
  2015年   6篇
  2014年   6篇
  2013年   15篇
  2012年   16篇
  2011年   9篇
  2010年   11篇
  2009年   8篇
  2008年   19篇
  2007年   11篇
  2006年   9篇
  2005年   17篇
  2004年   10篇
  2003年   12篇
  2002年   9篇
  2001年   3篇
  2000年   18篇
  1999年   8篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   5篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1966年   2篇
排序方式: 共有281条查询结果,搜索用时 265 毫秒
41.
Cellular longevity is a complex process relevant to age-related diseases including but not limited to chronic illness such as diabetes and metabolic syndromes. Two gene families have been shown to play a role in the genetic regulation of longevity; the Sirtuin and FOXO families. It is also established that nuclear Sirtuins interact with and under specific cellular conditions regulate the activity of FOXO gene family proteins. Thus, we hypothesize that a mitochondrial Sirtuin (SIRT3) might also interact with and regulate the activity of the FOXO proteins. To address this we used HCT116 cells overexpressing either wild-type or a catalytically inactive dominant negative SIRT3. For the first time we establish that FOXO3a is also a mitochondrial protein and forms a physical interaction with SIRT3 in mitochondria. Overexpression of a wild-type SIRT3 gene increase FOXO3a DNA-binding activity as well as FOXO3a dependent gene expression. Biochemical analysis of HCT116 cells over expressing the deacetylation mutant, as compared to wild-type SIRT3 gene, demonstrated an overall oxidized intracellular environment, as monitored by increase in intracellular superoxide and oxidized glutathione levels. As such, we propose that SIRT3 and FOXO3a comprise a potential mitochondrial signaling cascade response pathway.  相似文献   
42.
Overexpression of the tumor suppressor gene, wild-type p53 (wtp53), using adenoviral vectors (Adp53) has been suggested to kill cancer cells by hydroperoxide-mediated oxidative stress [1,2] and nutrient distress induced by the glucose analog, 2-deoxyglucose (2DG), has been suggested to enhance tumor cell killing by agents that induce oxidative stress via disrupting hydroperoxide metabolism [3,4]. In the current study clonogenic cell killing of PC-3 and DU-145 human prostate cancer cells (lacking functional p53) mediated by 4 h exposure to 50 plaque forming units (pfus)/cell of Adp53 (that caused the enforced overexpression of wtp53) was significantly enhanced by treatment with 2DG. Accumulation of glutathione disulfide was found to be significantly greater in both cell lines treated with 2DG+Adp53 and both cell lines treated with 2DG+Adp53 showed a approximately 2-fold increases in dihydroethidine (DHE) and 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (CDCFH(2)) oxidation, indicative of increased steady-state levels of O(2)(.-) and hydroperoxides, respectively. Finally, overexpression of catalase or glutathione peroxidase using adenoviral vectors partially, but significantly, protected DU-145 cells from the toxicity induced by 2DG+Adp53 treatment. These results show that treatment of human prostate cancer cells with the combination of 2DG (a nutrient stress) and overexpression of the tumor suppressor gene, wtp53, enhances clonogenic cell killing by a mechanism that involves oxidative stress as well as allowing for the speculation that inhibitors of glucose and hydroperoxide metabolism can be used in combination with Adp53 gene therapy to enhance therapeutic responses.  相似文献   
43.
44.
45.
Treatment of non-small cell lung cancer (NSCLC) with radiotherapy or chemoradiotherapy is often accompanied by the development of esophagitis and pneumonitis. Identifying patients who might be at increased risk for normal tissue toxicity would help in determination of the optimal radiation dose to avoid these events. We profiled 59 single nucleotide polymorphisms (SNPs) from 37 inflammation-related genes in 173 NSCLC patients with stage IIIA/IIIB (dry) disease who were treated with definitive radiation or chemoradiation. For esophagitis risk, nine SNPs were associated with a 1.5- to 4-fold increase in risk, including three PTGS2 (COX2) variants: rs20417 (HR:1.93, 95% CI:1.10–3.39), rs5275 (HR:1.58, 95% CI:1.09–2.27), and rs689470 (HR:3.38, 95% CI:1.09–10.49). Significantly increased risk of pneumonitis was observed for patients with genetic variation in the proinflammatory genes IL1A, IL8, TNF, TNFRSF1B, and MIF. In contrast, NOS3:rs1799983 displayed a protective effect with a 45% reduction in pneumonitis risk (HR:0.55, 95% CI:0.31–0.96). Pneumonitis risk was also modulated by polymorphisms in anti-inflammatory genes, including genetic variation in IL13. rs20541 and rs180925 each resulted in increased risk (HR:2.95, 95% CI:1.14–7.63 and HR:3.23, 95% CI:1.03–10.18, respectively). The cumulative effect of these SNPs on risk was dose-dependent, as evidenced by a significantly increased risk of either toxicity with an increasing number of risk genotypes (P<0.001). These results suggest that genetic variations among inflammation pathway genes may modulate the development of radiation-induced toxicity and, ultimately, help in identifying patients who are at an increased likelihood for such events.  相似文献   
46.
47.
Sympatric harbour (Phoca vitulina) and grey seals (Halichoerus grypus) are increasingly considered potential competitors, especially since recent local declines in harbour seal numbers while grey seal numbers remained stable or increased at their European core distributions. A better understanding of the interactions between these species is critical for conservation efforts. This study aimed to identify the trophic niche overlap between harbour and grey seals at the southern limit of their European range, in the Baie de Somme (BDS, Eastern English Channel, France), where numbers of resident harbour seals and visiting grey seals are increasing exponentially. Dietary overlap was identified from scat contents using hierarchical clustering. Isotopic niche overlap was quantified using δ13C and δ15N isotopic values from whiskers of 18 individuals, by estimating isotopic standard ellipses with a novel hierarchical model developed in a Bayesian framework to consider both intraindividual variability and interindividual variability. Foraging areas of these individuals were identified from telemetry data. The three independent approaches provided converging results, revealing a high trophic niche overlap due to consumption of benthic flatfish. Two diet clusters were dominated by either small or large benthic flatfish; these comprised 85.5% [CI95%: 80.3%–90.2%] of harbour seal scats and 46.8% [35.1%–58.4%] of grey seal scats. The narrower isotopic niche of harbour seals was nested within that of grey seals (58.2% [22.7%–100%] overlap). Grey seals with isotopic values similar to harbour seals foraged in coastal waters close to the BDS alike harbour seals did, suggesting the niche overlap may be due to individual grey seal strategies. Our findings therefore provide the basis for potential competition between both species (foraging on benthic flatfish close to the BDS). We suggest that a continued increase in seal numbers and/or a decrease in flatfish supply in this area could cause/amplify competitive interactions and have deleterious effects on harbour seal colonies.  相似文献   
48.
It has been hypothesized that ionizing radiation-induced disruptions in mitochondrial O? metabolism lead to persistent heritable increases in steady-state levels of intracellular superoxide (O?(?U+2212)) and hydrogen peroxide (H?O?) that contribute to the biological effects of radiation. Hamster fibroblasts (B9 cells) expressing a mutation in the gene coding for the mitochondrial electron transport chain protein succinate dehydrogenase subunit C (SDHC) demonstrate increases in steady-state levels of O??- and H?O?. When B9 cells were exposed to low-dose/low-LET radiation (5-50 cGy), they displayed significantly increased clonogenic cell killing compared with parental cells. Clones derived from B9 cells overexpressing a wild-type human SDHC (T4, T8) demonstrated significantly increased surviving fractions after exposure to 5-50 cGy relative to B9 vector controls. In addition, pretreatment with polyethylene glycol-conjugated CuZn superoxide dismutase and catalase as well as adenoviral-mediated overexpression of MnSOD and/or mitochondria-targeted catalase resulted in significantly increased survival of B9 cells exposed to 10 cGy ionizing radiation relative to vector controls. Adenoviral-mediated overexpression of either MnSOD or mitochondria-targeted catalase alone was equally as effective as when both were combined. These results show that mammalian cells over expressing mutations in SDHC demonstrate low-dose/low-LET radiation sensitization that is mediated by increased levels of O??- and H?O?. These results also support the hypothesis that mitochondrial O??- and H?O? originating from SDH are capable of playing a role in low-dose ionizing radiation-induced biological responses.  相似文献   
49.
Calcium uptake through the mitochondrial Ca2+ uniporter (MCU) is thought to be essential in regulating cellular signaling events, energy status, and survival. Functional dissection of the uniporter is now possible through the recent identification of the genes encoding for MCU protein complex subunits. Cancer cells exhibit many aspects of mitochondrial dysfunction associated with altered mitochondrial Ca2+ levels including resistance to apoptosis, increased reactive oxygen species production and decreased oxidative metabolism. We used a publically available database to determine that breast cancer patient outcomes negatively correlated with increased MCU Ca2+ conducting pore subunit expression and decreased MICU1 regulatory subunit expression. We hypothesized breast cancer cells may therefore be sensitive to MCU channel manipulation. We used the widely studied MDA-MB-231 breast cancer cell line to investigate whether disruption or increased activation of mitochondrial Ca2+ uptake with specific siRNAs and adenoviral overexpression constructs would sensitize these cells to therapy-related stress. MDA-MB-231 cells were found to contain functional MCU channels that readily respond to cellular stimulation and elicit robust AMPK phosphorylation responses to nutrient withdrawal. Surprisingly, knockdown of MCU or MICU1 did not affect reactive oxygen species production or cause significant effects on clonogenic cell survival of MDA-MB-231 cells exposed to irradiation, chemotherapeutic agents, or nutrient deprivation. Overexpression of wild type or a dominant negative mutant MCU did not affect basal cloning efficiency or ceramide-induced cell killing. In contrast, non-cancerous breast epithelial HMEC cells showed reduced survival after MCU or MICU1 knockdown. These results support the conclusion that MDA-MB-231 breast cancer cells do not rely on MCU or MICU1 activity for survival in contrast to previous findings in cells derived from cervical, colon, and prostate cancers and suggest that not all carcinomas will be sensitive to therapies targeting mitochondrial Ca2+ uptake mechanisms.  相似文献   
50.
IntroductionPure Neural Leprosy (PNL) is a rare clinical form of leprosy in which patients do not present with the classical skin lesions but have a high burden of the disability associated with the disease. Clinical characteristics and follow up of patients in PNL are still poorly described in the literature.ObjectiveThis paper aims to describe the clinical, electrophysiological and histopathological characteristics of PNL patients, as well as their evolution after multidrug therapy (MDT).MethodsFifty-two PNL patients were selected. Clinical, nerve conduction studies (NCS), histopathological and anti-PGL-1serology were evaluated. Patients were also assessed monthly during the MDT. At the end of the MDT, all of the patients had a new neurological examination and 44 were submitted to another NCS.ResultsParesthesia was the complaint most frequently reported by patients, and in the neurological examination the most common pattern observed was impairment in sensory and motor examination and a mononeuropathy multiplex. Painful nerve enlargement, a classical symptom of leprosy neuropathy, was observed in a minority of patients and in the motor NCS axonal injuries, alone or in combination with demyelinating features, were the most commonly observed. 88% of the patients did not present any leprosy reaction during MDT. There was no statistically significant difference between the neurological examinations, nor the NCS pattern, performed before and after the MDT.DiscussionThe classical hallmarks of leprosy neuropathy are not always present in PNL making the diagnosis even more challenging. Nerve biopsy is an important tool for PNL diagnosis as it may guide therapeutic decisions. This paper highlights unique characteristics of PNL in the spectrum of leprosy in an attempt to facilitate the diagnosis and management of these patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号