首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   2篇
  2023年   1篇
  2021年   3篇
  2019年   2篇
  2018年   5篇
  2016年   9篇
  2015年   9篇
  2014年   9篇
  2013年   12篇
  2012年   9篇
  2011年   11篇
  2010年   9篇
  2009年   6篇
  2008年   11篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有138条查询结果,搜索用时 31 毫秒
51.
Potato mop-top virus (PMTV; genus Pomovirus; family Virgaviridae) is transmitted by the soil-borne Spongospora subterranea f.sp. subterranea, a protoctist that causes powdery scab on potato. PMTV is distributed widely in the potato growing areas in South and North America, Japan and northwestern Europe. This article reviews the current knowledge on detection, distribution and control of PMTV with focus on the Baltic Sea region. Since the 1980s, PMTV has caused great economic losses to potato production in the Nordic countries (Norway, Sweden, Denmark and Finland), but its occurrence in other countries of the Baltic Sea region remained unknown. To fill this knowledge gap, harmonised sampling and virus detection procedures including bioassays and serological and molecular methods were employed by 21 research institutions to detect PMTV in potato tubers and soil samples in 2005–2008. Potato growing areas were widely contaminated with PMTV in the Nordic countries. Only the main seed potato production area in northern Sweden and the High Grade seed potato production zone in Finland were negative for PMTV. Intensive and systematic surveys in Poland in 2004–2008 found no evidence of PMTV, except a single PMTV-infected tuber detected in 2008. Surveys in the Baltic countries (Lithuania, Latvia and Estonia) and northwestern Russia (Leningrad province) were negative for PMTV, except infection of minitubers in a screenhouse in Latvia in 2005. Varying percentages of tubers expressing spraing symptoms in Sweden, Norway, Denmark and Poland were infected with Tobacco rattle virus, and bioassays indicated similar results for Russia. Incidence of symptomless infections with PMTV was high in tubers of many potato cultivars. Here, we discuss the contrasting patterns of distribution of PMTV in the Baltic Sea region, factors playing a role in dispersal and establishment of PMTV in new fields and means for controlling PMTV and its spread to new areas. We emphasise the use of the current virus-specific methods for the detection of PMTV in symptomless potato tubers and the high risks of disseminating PMTV to new fields and areas in viruliferous resting spores of S. subterranea in the soil adhering to seed tubers. PMTV-resistant potato cultivars will provide the only sustainable means for preventing yield losses in the infested fields and the prospects of resistance breeding are summarised.  相似文献   
52.
Trypanosoma brucei is the causing agent of African trypanosomiasis. These parasites possess a unique thiol redox system required for DNA synthesis and defense against oxidative stress. It includes trypanothione and trypanothione reductase (TryR) instead of the thioredoxin and glutaredoxin systems of mammalian hosts. Here, we show that the benzisothiazolone compound ebsulfur (EbS), a sulfur analogue of ebselen, is a potent inhibitor of T. brucei growth with a favorable selectivity index over mammalian cells. EbS inhibited the TryR activity and decreased non-protein thiol levels in cultured parasites. The inhibition of TryR by EbS was irreversible and NADPH-dependent. EbS formed a complex with TryR and caused oxidation and inactivation of the enzyme. EbS was more toxic for T. brucei than for Trypanosoma cruzi, probably due to lower levels of TryR and trypanothione in T. brucei. Furthermore, inhibition of TryR produced high intracellular reactive oxygen species. Hydrogen peroxide, known to be constitutively high in T. brucei, enhanced the EbS inhibition of TryR. The elevation of reactive oxygen species production in parasites caused by EbS induced a programmed cell death. Soluble EbS analogues were synthesized and cured T. brucei brucei infection in mice when used together with nifurtimox. Altogether, EbS and EbS analogues disrupt the trypanothione system, hampering the defense against oxidative stress. Thus, EbS is a promising lead for development of drugs against African trypanosomiasis.  相似文献   
53.
Mutations in the voltage-gated K+ channel Kv1.1 have been linked with a mixed phenotype of episodic ataxia and/or myokymia. Recently, we presented autosomal dominant hypomagnesemia as a new phenotypic characteristic associated with a mutation in Kv1.1 (N255D) (Glaudemans, B., van der Wijst, J., Scola, R. H., Lorenzoni, P. J., Heister, A., van der Kemp, A. W., Knoers, N. V., Hoenderop, J. G., and Bindels, R. J. (2009) J. Clin. Invest. 119, 936–942). A conserved asparagine at position 255 in the third transmembrane segment was converted into an aspartic acid, resulting in a non-functional channel. In this study, we explored the functional consequence of this conserved residue by substitution with other hydrophobic, polar, or charged amino acids (N255E, N255Q, N255A, N255V, N255T, and N255H). Upon overexpression in human embryonic kidney (HEK293) cells, cell surface biotinylation revealed plasma membrane expression of all mutant channels. Next, we used the whole-cell patch clamp technique to demonstrate that the N255E and N255Q mutants were non-functional. Substitution of Asn-255 with other amino acids (N255A, N255V, N255T, and N255H) did not prevent ion conduction, and these mutant channels activated at more negative potentials when compared with wild-type channels, −41.5 ± 1.6, −45.5 ± 2.0, −50.5 ± 1.9, and −33.8 ± 1.3 mV to −29.4 ± 1.1 mV, respectively. The time constant of activation was significantly faster for the two most hydrophobic mutations, N255A (6.2 ± 0.2 ms) and N255V (5.2 ± 0.3 ms), and the hydrophilic mutant N255T (9.8 ± 0.4 ms) in comparison with wild type (13.0 ± 0.9 ms). Furthermore, the voltage dependence of inactivation was shifted ∼13 mV to more negative potentials in all mutant channels except for N255H. Taken together, our data showed that an asparagine at position 255 in Kv1.1 is required for normal voltage dependence and kinetics of channel gating.  相似文献   
54.
Human neutrophils express formyl peptide receptor 1 and 2 (FPR1 and FPR2), two highly homologous G-protein-coupled cell surface receptors important for the cellular recognition of chemotactic peptides. They share many functional as well as signal transduction features, but some fundamental differences have been described. One such difference was recently presented when the FPR2-specific ligand MMK-1 was shown to trigger a unique signal in neutrophils [S. Partida-Sanchez, P. Iribarren, M.E. Moreno-Garcia, et al., Chemotaxis and calcium responses of phagocytes to formyl peptide receptor ligands is differentially regulated by cyclic ADP ribose, J. Immunol. 172 (2004) 1896–1906]. This signal bypassed the emptying of the intracellular calcium stores, a route normally used to open the store-operated calcium channels present in the plasma membrane of neutrophils. Instead, the binding of MMK-1 to FPR2 was shown to trigger a direct opening of the plasma membrane channels. In this report, we add MMK-1 to a large number of FPR2 ligands that activate the neutrophil superoxide-generating NADPH-oxidase. In contrast to earlier findings we show that the transient rise in intracellular free calcium induced by MMK-1 involves both a release of calcium from intracellular stores and an opening of channels in the plasma membrane. The same pattern was obtained with another characterized FPR2 ligand, WKYMVM, and it is also obvious that the two formyl peptide receptor family members trigger the same type of calcium response in human neutrophils.  相似文献   
55.

Background

Independent genome-wide association studies (GWAS) showed an obesogenic effect of two single nucleotide polymorphisms (SNP; rs12970134 and rs17782313) more than 150 kb downstream of the melanocortin 4 receptor gene (MC4R). It is unclear if the SNPs directly influence MC4R function or expression, or if the SNPs are on a haplotype that predisposes to obesity or includes functionally relevant genetic variation (synthetic association). As both exist, functionally relevant mutations and polymorphisms in the MC4R coding region and a robust association downstream of the gene, MC4R is an ideal model to explore synthetic association.

Methodology/Principal Findings

We analyzed a genomic region (364.9 kb) encompassing the MC4R in GWAS data of 424 obesity trios (extremely obese child/adolescent and both parents). SNP rs12970134 showed the lowest p-value (p = 0.004; relative risk for the obesity effect allele: 1.37); conditional analyses on this SNP revealed that 7 of 78 analyzed SNPs provided independent signals (p≤0.05). These 8 SNPs were used to derive two-marker haplotypes. The three best (according to p-value) haplotype combinations were chosen for confirmation in 363 independent obesity trios. The confirmed obesity effect haplotype includes SNPs 3′ and 5′ of the MC4R. Including MC4R coding variants in a joint model had almost no impact on the effect size estimators expected under synthetic association.

Conclusions/Significance

A haplotype reaching from a region 5′ of the MC4R to a region at least 150 kb from the 3′ end of the gene showed a stronger association to obesity than single SNPs. Synthetic association analyses revealed that MC4R coding variants had almost no impact on the association signal. Carriers of the haplotype should be enriched for relevant mutations outside the MC4R coding region and could thus be used for re-sequencing approaches. Our data also underscore the problems underlying the identification of relevant mutations depicted by GWAS derived SNPs.  相似文献   
56.
Specific biological roles of the classical transient receptor potential channel 1 (TRPC1) are still largely elusive. To investigate the function of TRPC1 proteins in cell physiology, we studied heterologously expressed TRPC1 channels and found that recombinant TRPC1 subunits do not form functional homomeric channels. Instead, by electrophysiological analysis TRPC1 was shown to form functional heteromeric, receptor-operated channel complexes with TRPC3, -4, -5, -6, and -7 indicating that TRPC1 proteins can co-assemble with all members of the TRPC subfamily. In all TRPC1-containing heteromers, TRPC1 subunits significantly decreased calcium permeation. The exchange of select amino acids in the putative pore-forming region of TRPC1 further reduced calcium permeability, suggesting that TRPC1 subunits contribute to the channel pore. In immortalized immature gonadotropin-releasing hormone neurons endogenously expressing TRPC1, -2, -5, and -6, down-regulation of TRPC1 resulted in increased calcium permeability and elevated basal cytosolic calcium concentrations. We did not observe any involvement of TRPC1 in store-operated cation influx. Notably, TRPC1 suppressed the migration of gonadotropin-releasing hormone neurons without affecting cell proliferation. Conversely, in TRPC1 knockdown neurons, specific migratory properties like distance covered, locomotion speed, and directionality were increased. These findings suggest a novel regulatory mechanism relying on the expression of TRPC1 and the subsequent formation of heteromeric TRPC channel complexes with reduced calcium permeability, thereby fine-tuning neuronal migration.  相似文献   
57.
Transport of material and signals between extensive neuronal processes and the cell body is essential to neuronal physiology and survival. Slowing of axonal transport has been shown to occur before the onset of symptoms in amyotrophic lateral sclerosis (ALS). We have previously shown that several familial ALS-linked copper–zinc superoxide dismutase (SOD1) mutants (A4V, G85R, and G93A) interacted and colocalized with the retrograde dynein–dynactin motor complex in cultured cells and affected tissues of ALS mice. We also found that the interaction between mutant SOD1 and the dynein motor played a critical role in the formation of large inclusions containing mutant SOD1. In this study, we showed that, in contrast to the dynein situation, mutant SOD1 did not interact with anterograde transport motors of the kinesin-1 family (KIF5A, B and C). Using dynein and kinesin accumulation at the sciatic nerve ligation sites as a surrogate measurement of axonal transport, we also showed that dynein mediated retrograde transport was slower in G93A than in WT mice at an early presymptomatic stage. While no decrease in KIF5A-mediated anterograde transport was detected, the slowing of anterograde transport of dynein heavy chain as a cargo was observed in the presymptomatic G93A mice. The results from this study along with other recently published work support that mutant SOD1 might only interact with and interfere with some kinesin members, which, in turn, could result in the impairment of a selective subset of cargos. Although it remains to be further investigated how mutant SOD1 affects different axonal transport motor proteins and various cargos, it is evident that mutant SOD1 can induce defects in axonal transport, which, subsequently, contribute to the propagation of toxic effects and ultimately motor neuron death in ALS.  相似文献   
58.
From 1964 to 1971, twins and singleton controls were followed from 10 to 16 years of age in Swedish schools. It was a nationally representative sample of 323 twin pairs, and 1193 classmate controls. In 1991 a follow-up was made of this sample with the purpose of investigating genetic influences on experienced family and school environments, as well as coping ability at the age of 35. The follow-up also evaluated the relation between coping ability at mid-life and family environment, as well as coping ability and school environment at adolescence for males and females. Genetic influences on perceived family and school environments, as well as on self-reported coping ability, have been investigated by means of comparisons of MZ and DZ twin pairs. A stepwise linear regression analysis was performed to assess environmental influences on coping ability at mid-life. The findings indicated that coping ability at mid-life is influenced by both genetic and environmental factors. Different environmental factors were operating for males and females, however. The results demonstrate that early environmental factors and genetic disposition have a long-term effect on coping ability.  相似文献   
59.

Background

Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved.

Methods

Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM.

Results

Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM.

Conclusion

The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects.  相似文献   
60.
Tricholoma matsutake is an economically important ectomycorrhizal fungus of coniferous woodlands. Mycologists suspect that this fungus is also capable of saprotrophic feeding. In order to evaluate this hypothesis, enzyme and chemical assays were performed in the field and laboratory. From a natural population of T. matsutake in southern Finland, samples of soil-mycelium aggregate (shiro) were taken from sites of sporocarp formation and nearby control (PCR-negative) spots. Soil organic carbon and activity rates of hemicellulolytic enzymes were measured. The productivity of T. matsutake was related to the amount of utilizable organic carbon in the shiro, where the activity of xylosidase was significantly higher than in the control sample. In the laboratory, sterile pieces of bark from the roots of Scots pine were inoculated with T. matsutake and the activity rates of two hemicellulolytic enzymes (xylosidase and glucuronidase) were assayed. Furthermore, a liquid culture system showed how T. matsutake can utilize hemicellulose as its sole carbon source. Results linked and quantified the general relationship between enzymes secreted by T. matsutake and the degradation of hemicellulose. Our findings suggest that T. matsutake lives mainly as an ectomycorrhizal symbiont but can also feed as a saprotroph. A flexible trophic ecology confers T. matsutake with a clear advantage in a heterogeneous environment and during sporocarp formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号