首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4854篇
  免费   401篇
  国内免费   3篇
  2024年   5篇
  2023年   28篇
  2022年   28篇
  2021年   151篇
  2020年   83篇
  2019年   97篇
  2018年   106篇
  2017年   94篇
  2016年   188篇
  2015年   297篇
  2014年   331篇
  2013年   366篇
  2012年   462篇
  2011年   404篇
  2010年   276篇
  2009年   234篇
  2008年   310篇
  2007年   306篇
  2006年   273篇
  2005年   234篇
  2004年   224篇
  2003年   246篇
  2002年   195篇
  2001年   29篇
  2000年   21篇
  1999年   39篇
  1998年   43篇
  1997年   29篇
  1996年   29篇
  1995年   19篇
  1994年   15篇
  1993年   20篇
  1992年   18篇
  1991年   9篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   9篇
  1985年   3篇
  1983年   3篇
  1980年   3篇
  1979年   2篇
  1975年   2篇
  1958年   2篇
  1944年   1篇
  1934年   1篇
  1932年   1篇
  1931年   2篇
  1929年   1篇
  1928年   1篇
排序方式: 共有5258条查询结果,搜索用时 15 毫秒
91.
Although the pivotal implication of the host-encoded Prion protein, PrP, in the neuropathology of transmissible spongiform encephalopathy is known for decades, its biological role remains mostly elusive. Genetic inactivation is one way to assess such issue but, so far, PrP-knockout mice did not help much. However, recent reports involving (1) further studies of these mice during embryogenesis, (2) knockdown experiments in Zebrafish and (3) knockdown of Shadoo, a protein with PrP-like functional domains, in PrP-knockout mice, all suggested a role of the Prion protein family in early embryogenesis. This view is challenged by the recent report that PrP/Shadoo knockout mice are healthy and fertile. Although puzzling, these apparently contradictory data may on the contrary help at deciphering the Prion protein family role through focusing scientific attention outside the central nervous system and by helping the identification of other loci involved in the genetic robustness associated with PrP.  相似文献   
92.

Background

Although the ultrastructure of the schistosome esophageal gland was described >35 years ago, its role in the processing of ingested blood has never been established. The current study was prompted by our identification of MEG-4.1 expression in the gland and the observation of erythrocyte uncoating in the posterior esophagus.

Methodology/Principal Findings

The salient feature of the posterior esophagus, characterized by confocal and electron microscopy, is the enormous increase in membrane surface area provided by the plate-like extensions and basal invaginations of the lining syncytium, with unique crystalloid vesicles releasing their contents between the plates. The feeding process was shown by video microscopy to be divided into two phases, blood first accumulating in the anterior lumen before passing as a bolus to the posterior. There it streamed around a plug of material revealed by confocal microscopy as tethered leucocytes. These were present in far larger numbers than predicted from the volume of the lumen, and in varying states of damage and destruction. Intact erythrocytes were detected in the anterior esophagus but not observed thereafter, implying that their lysis occurred rapidly as they enter the posterior. Two further genes, MEGs 4.2 and 14, were shown to be expressed exclusively in the esophageal gland. Bioinformatics predicted that MEGs 4.1 and 4.2 possessed a common hydrophobic region with a shared motif, while antibodies to SjMEG-4.1 showed it was bound to leucocytes in the esophageal lumen. It was also predicted that MEGs 4.1 and 14 were heavily O-glycosylated and this was confirmed for the former by 2D-electrophoresis and Western blotting.

Conclusions/Significance

The esophageal gland and its products play a central role in the processing of ingested blood. The binding of host antibodies in the esophageal lumen shows that some constituents are antibody targets and could provide a new source of vaccine candidates.  相似文献   
93.
Fc-modified anti-human CD3ε monoclonal antibodies (mAbs) are in clinical development for the treatment of autoimmune diseases. These next generation mAbs have completed clinical trials in patients with type-1 diabetes and inflammatory bowel disease demonstrating a narrow therapeutic window. Lowered doses are ineffective, yet higher pharmacologically-active doses cause an undesirable level of adverse events. Thus, there is a critical need for a return to bench research to explore ways of improving clinical outcomes. Indeed, we recently reported that a short course of treatment affords synergy, providing long-term disease amelioration when combining anti-mouse CD3 and anti-mouse tumor necrosis factor mAbs in experimental arthritis. Such strategies may widen the window between risk and benefit; however, to more accurately assess experimentally the biology and pharmacology, reagents that mimic the current development candidates were required. Consequently, we engineered an Fc-modified anti-mouse CD3ε mAb, 2C11-Novi. Here, we report the functional characterization of 2C11-Novi demonstrating that it does not bind FcγR in vitro and elicits little cytokine release in vivo, while maintaining classical pharmacodynamic effects (CD3-TCR downregulation and T cell killing). Furthermore, we observed that oral administration of 2C11-Novi ameliorated progression of remitting-relapsing experimental autoimmune encephalitis in mice, significantly reducing the primary acute and subsequent relapse phase of the disease. With innovative approaches validated in two experimental models of human disease, 2C11-Novi represents a meaningful tool to conduct further mechanistic studies aiming at exploiting the immunoregulatory properties of Fc-modified anti-CD3 therapies via combination therapy using parenteral or oral routes of administration.  相似文献   
94.
How do humans perceive the passage of time and the duration of events without a dedicated sensory system for timing? Previous studies have demonstrated that when a stimulus changes over time, its duration is subjectively dilated, indicating that duration judgments are based on the number of changes within an interval. In this study, we tested predictions derived from three different accounts describing the relation between a changing stimulus and its subjective duration as either based on (1) the objective rate of changes of the stimulus, (2) the perceived saliency of the changes, or (3) the neural energy expended in processing the stimulus. We used visual stimuli flickering at different frequencies (4–166 Hz) to study how the number of changes affects subjective duration. To this end, we assessed the subjective duration of these stimuli and measured participants'' behavioral flicker fusion threshold (the highest frequency perceived as flicker), as well as their threshold for a frequency-specific neural response to the flicker using EEG. We found that only consciously perceived flicker dilated perceived duration, such that a 2 s long stimulus flickering at 4 Hz was perceived as lasting as long as a 2.7 s steady stimulus. This effect was most pronounced at the slowest flicker frequencies, at which participants reported the most consistent flicker perception. Flicker frequencies higher than the flicker fusion threshold did not affect perceived duration at all, even if they evoked a significant frequency-specific neural response. In sum, our findings indicate that time perception in the peri-second range is driven by the subjective saliency of the stimulus'' temporal features rather than the objective rate of stimulus changes or the neural response to the changes.  相似文献   
95.

Introduction

Measurement of optic nerve sheath diameter (ONSD) by ultrasound is increasingly used as a marker to detect raised intracranial pressure (ICP). ONSD varies with age and there is no clear consensus between studies for an upper limit of normal. Knowledge of normal ONSD in a healthy population is essential to interpret this measurement.

Methods

In a prospective observational study, ONSD was measured using a 15 MHz ultrasound probe in healthy volunteers in Chittagong, Bangladesh. The aims were to determine the normal range of ONSD in healthy Bangladeshi adults and children, compare measurements in males and females, horizontal and vertical beam orientations and left and right eyes in the same individual and to determine whether ONSD varies with head circumference independent of age.

Results

136 subjects were enrolled, 12.5% of whom were age 16 or under. Median ONSD was 4.41 mm with 95% of subjects in the range 4.25–4.75 mm. ONSD was bimodally distributed. There was no relationship between ONSD and age (≥4 years), gender, head circumference, and no difference in left vs right eye or horizontal vs vertical beam.

Conclusions

Ultrasonographic ONSD in Bangladeshi healthy volunteers has a narrow bimodal distribution independent of age (≥4 years), gender and head circumference. ONSD >4.75 mm in this population should be considered abnormal.  相似文献   
96.

Background

Infants of mothers with placental Plasmodium falciparum infections at delivery are themselves more susceptible to malaria attacks or to infection in early life.

Methodology/ Principal Findings

To assess the impact of either the timing or the number of pregnancy-associated malaria (PAM) infections on the incidence of parasitemia or malaria attacks in infancy, we followed 218 mothers through pregnancy (monthly visits) up to delivery and their infants from birth to 12 months of age (fortnightly visits), collecting detailed clinical and parasitological data. After adjustment on location, mother’s age, birth season, bed net use, and placental malaria, infants born to a mother with PAM during the third trimester of pregnancy had a significantly increased risk of infection (OR [95% CI]: 4.2 [1.6; 10.5], p = 0.003) or of malaria attack (4.6 [1.7; 12.5], p = 0.003). PAM during the first and second trimesters had no such impact. Similarly significant results were found for the effect of the overall number of PAM episodes on the time to first parasitemia and first malaria attack (HR [95% CI]: 2.95 [1.58; 5.50], p = 0.001 and 3.19 [1.59; 6.38], p = 0.001) respectively.

Conclusions/ Significance

This study highlights the importance of protecting newborns by preventing repeated episodes of PAM in their mothers.  相似文献   
97.
A large majority of surface plasmon resonance (SPR) sensors reported in the literature are designed to operate in the visible electromagnetic spectrum. However, the near-infrared, particularly at the telecommunications wavelength of 1550 nm, is also especially attractive for SPR sensing applications. In fact, SPR sensors operating in this region benefit from narrower resonance and deeper field penetration. In this paper, we report a theoretical and experimental study of an SPR sensor operating at a fixed wavelength of 1550 nm. The influence of the choice of metals and the interrogation methods on the sensitivity of the resulting SPR sensor is investigated. Two types of sensor chips (simple gold (Au) and bimetallic silver/Au structure) and three interrogation methods (monitoring of the position of the reflectivity minimum, the position of the centroid, and the intensity evolution of the reflectivity) are examined. We show that a refractive index resolution of 2.7?×?10?6 refractive index unit can be easily obtained, and with further optimization of the measurement system, the ultimate limit of detection is expected to be even lowered. Therefore, the approach discussed here already shows a promising potential for highly sensitive SPR sensors.  相似文献   
98.
Highlights? Canonical ER stress pathways are activated in central neurons during hypoxia/ischemia ? The ER stress endoribonuclease IRE1α degrades the neurovascular guidance cue netrin-1 ? Neuronal-derived netrin-1 activates a reparative proangiogenic program in microglial cells ? Neuronal ER stress prevents reparative angiogenesis in the ischemic neural retina  相似文献   
99.
Large-scale analyses of protein-protein interactions based on coarse-grain molecular docking simulations and binding site predictions resulting from evolutionary sequence analysis, are possible and realizable on hundreds of proteins with variate structures and interfaces. We demonstrated this on the 168 proteins of the Mintseris Benchmark 2.0. On the one hand, we evaluated the quality of the interaction signal and the contribution of docking information compared to evolutionary information showing that the combination of the two improves partner identification. On the other hand, since protein interactions usually occur in crowded environments with several competing partners, we realized a thorough analysis of the interactions of proteins with true partners but also with non-partners to evaluate whether proteins in the environment, competing with the true partner, affect its identification. We found three populations of proteins: strongly competing, never competing, and interacting with different levels of strength. Populations and levels of strength are numerically characterized and provide a signature for the behavior of a protein in the crowded environment. We showed that partner identification, to some extent, does not depend on the competing partners present in the environment, that certain biochemical classes of proteins are intrinsically easier to analyze than others, and that small proteins are not more promiscuous than large ones. Our approach brings to light that the knowledge of the binding site can be used to reduce the high computational cost of docking simulations with no consequence in the quality of the results, demonstrating the possibility to apply coarse-grain docking to datasets made of thousands of proteins. Comparison with all available large-scale analyses aimed to partner predictions is realized. We release the complete decoys set issued by coarse-grain docking simulations of both true and false interacting partners, and their evolutionary sequence analysis leading to binding site predictions. Download site: http://www.lgm.upmc.fr/CCDMintseris/  相似文献   
100.
Infection of host tissues by Staphylococcus aureus and S. epidermidis requires an unusual family of staphylococcal adhesive proteins that contain long stretches of serine-aspartate dipeptide-repeats (SDR). The prototype member of this family is clumping factor A (ClfA), a key virulence factor that mediates adhesion to host tissues by binding to extracellular matrix proteins such as fibrinogen. However, the biological siginificance of the SDR-domain and its implication for pathogenesis remain poorly understood. Here, we identified two novel bacterial glycosyltransferases, SdgA and SdgB, which modify all SDR-proteins in these two bacterial species. Genetic and biochemical data demonstrated that these two glycosyltransferases directly bind and covalently link N-acetylglucosamine (GlcNAc) moieties to the SDR-domain in a step-wise manner, with SdgB appending the sugar residues proximal to the target Ser-Asp repeats, followed by additional modification by SdgA. GlcNAc-modification of SDR-proteins by SdgB creates an immunodominant epitope for highly opsonic human antibodies, which represent up to 1% of total human IgG. Deletion of these glycosyltransferases renders SDR-proteins vulnerable to proteolysis by human neutrophil-derived cathepsin G. Thus, SdgA and SdgB glycosylate staphylococcal SDR-proteins, which protects them against host proteolytic activity, and yet generates major eptopes for the human anti-staphylococcal antibody response, which may represent an ongoing competition between host and pathogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号