首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10751篇
  免费   796篇
  国内免费   759篇
  2024年   9篇
  2023年   130篇
  2022年   192篇
  2021年   661篇
  2020年   392篇
  2019年   481篇
  2018年   430篇
  2017年   318篇
  2016年   470篇
  2015年   724篇
  2014年   834篇
  2013年   814篇
  2012年   1049篇
  2011年   827篇
  2010年   499篇
  2009年   492篇
  2008年   511篇
  2007年   484篇
  2006年   394篇
  2005年   369篇
  2004年   289篇
  2003年   259篇
  2002年   191篇
  2001年   207篇
  2000年   150篇
  1999年   164篇
  1998年   100篇
  1997年   110篇
  1996年   116篇
  1995年   104篇
  1994年   108篇
  1993年   68篇
  1992年   65篇
  1991年   84篇
  1990年   53篇
  1989年   43篇
  1988年   25篇
  1987年   16篇
  1986年   14篇
  1985年   23篇
  1984年   14篇
  1983年   17篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
Compatible solutes are key for the ability of halophilic bacteria to resist high osmotic stress. They have received wide attention from researchers for their excellent osmotic protection properties. Hydroxyectoine is a particularly important compatible solute, but its production by microbes faces several challenges, including low titer/yield, the presence of the byproduct ectoine, and the requirement of high salinity. Here, we aimed to metabolically engineer Escherichia coli to efficiently produce hydroxyectoine in the absence of osmotic stress without accumulating the byproduct ectoine. First, combinatorial optimization of the expression strength of key genes in the ectoine synthesis module and hydroxyectoine synthesis module was conducted. After optimization of the expression of these genes, 12.12 g/L hydroxyectoine and 0.24 g/L ectoine were obtained at 36 h in shake-flask fermentation with the addition of the co-substrate α-ketoglutarate. Further optimization of the addition of α-ketoglutarate achieved the sole production of hydroxyectoine (i.e., no ectoine accumulation), indicating that the supply of α-ketoglutarate is critically important for sole hydroxyectoine production. Finally, quorum sensing-based auto-regulation of intracellular α-ketoglutarate pool was implemented as an alternative to α-ketoglutarate addition by coupling the expression of sucA with the esaI/esaR circuit, which led to 14.93 g/L hydroxyectoine with a unit cell yield of 1.678 g/g and no ectoine accumulation in the absence of osmotic stress. This is the highest reported titer of sole hydroxyectoine production under salinity-free fermentation to date.  相似文献   
992.
Identifying the ecological environment suitable for the growth of Thuja sutchuenensis and predicting other potential distribution areas are essential to protect this endangered species. After selecting 24 environmental factors that could affect the distribution of T. sutchuenensis, including climate, topography, soil and Normalized Difference Vegetation Index (NDVI), we adopted the Random Forest-MaxEnt integrated model to analyze our data. Based on the Random Forest study, the contribution of the mean temperature of the warmest quarter, mean temperature of the coldest quarter, annual mean temperature and mean temperature of the driest quarter was large. Based on MaxEnt model prediction outputs, the potential distribution map not only identified areas that originally recorded T. sutchuenensis, such as Xuanhan County, Kai County and Chengkou County, but also identified highly suitable distribution areas where T. sutchuenensis may exist, including Wanyuan County, Sichuan Province, and the junction of Chongqing and Hubei Province. This provides a more explicit geographic range for ex situ conservation and reintroduction of T. sutchuenensis. Our results also indicate that, in addition to climate factors, topography and soil factors are also important environmental factors that affect distribution. This provides a theoretical basis for subsequent laboratory construction to simulate the indoor growth of T. sutchuenensis.  相似文献   
993.
Ge  Jielin  Ma  Boyu  Xu  Wenting  Zhao  Changming  Xie  Zongqiang 《Plant and Soil》2022,477(1-2):679-692
Plant and Soil - To assess the direction and strength of climate and leaf litter trait effects on decomposition dynamics throughout the litter decomposition process. We performed a three-year-long...  相似文献   
994.
Lei  Xiaojin  Liu  Zhongyuan  Xie  Qingjun  Fang  Jiaru  Wang  Chunyao  Li  Jinghang  Wang  Chao  Gao  Caiqiu 《Plant molecular biology》2022,109(6):689-702
Plant Molecular Biology - Construction of ML-hGRN for the salt pathway in Populus davidiana?×?P. bolleana. Construction of ML-hGRN for the lignocellulosic pathway in Populus...  相似文献   
995.
Journal of Plant Growth Regulation - Rice is the most important food crop species of the developing world, and there are increasing concerns about food security to increase rice yields...  相似文献   
996.
Cui  Junmei  Hu  Yang  Huang  Yan  Guo  Jinya  Xie  Xiulan  Zhang  Huaiyu  Cai  Yi 《Plant Molecular Biology Reporter》2022,40(1):68-80
Plant Molecular Biology Reporter - Plants are subjected to a variety of environmental stressors, including salinity, drought and pathogens, and have consequently developed a sophisticated sensing...  相似文献   
997.
Xu  Zhenzhen  Jiang  Jianxiang  Xu  Shengyuan  Xie  Zunchun  He  Pei  Jiang  Shishi  Xu  Renshi 《Cellular and molecular neurobiology》2022,42(4):1035-1046

Nerve growth factor (NGF) is a protective factor of neural cells; the possible relationship between the NGF and the pathogenesis of amyotrophic lateral sclerosis (ALS) hasn’t been completely known. In this study, we observed and analyzed the expression and distribution of NGF, as well as the possible relationship between the NGF expression and distribution and the neural cell death in both SOD1 wild-type (WT) and Tg(SOD1*G93A)1Gur (TG) mice applying the fluorescence immunohistochemistry method. The results showed that the expression and distribution of NGF in the anterior horn (AH), the lateral horn (LH), and the surrounding central canal (CC) significantly increased at the supper early stage of ALS (Pre-onset stage) and the early stage (Onset stage), but the NGF expression and distribution in the AH, the LH, and the surrounding CC significantly reduced at the progression stage. The astrocyte, neuron, and oligodendrocyte produced the NGF and the neural precursor cells (NPCs) produced the NGF. The neural cell death gradually increased accompanying with the reduction of NGF expression and distribution. Our data suggested that the NGF was a protective factor of neural cells, because the neural cells in the AH, the LH, and the surrounding CC produced more NGF at the supper early and early stage of ALS; moreover, the NPCs produced the NGF. It implied that the NGF exerted the protective effect of neural cells, prevented from the neural cell death and aroused the potential of self-repair in the development of ALS.

  相似文献   
998.
999.
Qi  Shuqun  Wang  Yating  Wei  Xiaoxi  Xie  Di  Mohsen  Rawan  Hsieh  Yuan-Lynn  Mishina  Yuji  Liu  Fei 《Transgenic research》2022,31(3):399-411

The cranial base synchondroses are growth centers that drive cranial and upper facial growth. The intersphenoid synchondrosis (ISS) and the spheno-occipital synchondrosis (SOS) are two major synchondroses located in the middle of the cranial base and are maintained at early developmental stages to sustain cranial base elongation. In this study, we report unexpected premature ossification of ISS and SOS when Cre recombinase is activated in a chondrocyte-specific manner. We used a Cre transgenic line expressing Aggrecan enhancer-driven, Tetracycline-inducible Cre (ATC), of which expression is controlled by a Col2a1 promoter. Neonatal doxycycline injection or doxycycline diet fed to breeders was used to activate Cre recombinase. The premature ossification of ISS and/or SOS led to a reduction in cranial base length and subsequently a dome-shaped skull. Furthermore, the mice carrying either heterozygous or homozygous conditional deletion of Tsc1 or Fip200 using ATC mice developed similar craniofacial abnormalities, indicating that Cre activity itself but not conditional deletion of Tsc1 or Fip200 gene, is the major contributor of this phenotype. In contrast, the Col2a1-Cre mice carrying Cre expression in both perichondrium and chondrocytes and the mice carrying the conditional deletion of Tsc1 or Fip200 using Col2a1-Cre did not manifest the same skull abnormalities. In addition to the defective craniofacial bone development, our data also showed that the Cre activation in chondrocytes significantly compromised bone acquisition in femur. Our data calls for the consideration of the potential in vivo adverse effects caused by Cre expression in chondrocytes and reinforcement of the importance of including Cre-containing controls to facilitate accurate phenotype interpretation in transgenic research.

  相似文献   
1000.
Although researchers have established that DNA methylation and active demethylation are dynamically regulated in plant cells, the molecular mechanism for the regulation of active DNA demethylation is not well understood. By using an Arabidopsis (Arabidopsis thaliana) line expressing the Promoter RESPONSIVE TO DEHYDRATION 29A:LUCIFERASE (ProRD29A:LUC) and Promoter cauliflower mosaic virus 35S:NEOMYCIN PHOSPHOTRANSFERASE II (Pro35S:NPTII) transgenes, we isolated an mbd7 (for methyl-CpG-binding domain protein7) mutant. The mbd7 mutation causes an inactivation of the Pro35S:NPTII transgene but does not affect the expression of the ProRD29A:LUC transgene. The silencing of the Pro35S:NPTII reporter gene is associated with DNA hypermethylation of the reporter gene. MBD7 interacts physically with REPRESSOR OF SILENCING5/INCREASED DNA METHYLATION2, a protein in the small heat shock protein family. MBD7 prefers to target the genomic loci with high densities of DNA methylation around chromocenters. The Gypsy-type long terminal repeat retrotransposons mainly distributed around chromocenters are most affected by mbd7 in all transposons. Our results suggest that MBD7 is required for active DNA demethylation and antisilencing of the genomic loci with high densities of DNA methylation in Arabidopsis.DNA methylation is an important epigenetic marker for genome stability and the regulation of gene expression in both plants and animals (Law and Jacobsen, 2010; He et al., 2011). In plants, the molecular mechanisms for DNA methylation have been well characterized by the use of powerful genetic screening systems (Bartee et al., 2001; Lindroth et al., 2001; Matzke et al., 2004; He et al., 2009). A transgene or an endogenous gene may be silenced because of DNA hypermethylation in the promoter region. Screenings for mutants with release of the silenced marker genes have identified many components that are involved in RNA-directed DNA methylation (RdDM) and in maintaining DNA methylation (Matzke and Birchler, 2005; Law and Jacobsen, 2009; He et al., 2011; Bender, 2012). DNA methylation is catalyzed by DNA methyltransferases including DNA METHYLTRANSFERASE1 (MET1) and CHROMOMETHYLASE3 (CMT3), which maintain symmetric CG and CHG methylation, respectively, during DNA replication, and DOMAINS REARRANGED METHYLASE2 (DRM2) and CMT2, which are required for establishing CHG and asymmetric CHH methylation during each cell cycle. DRM2 also catalyzes CG methylation (Law and Jacobsen, 2010; Haag and Pikaard, 2011; He et al., 2011; Zemach et al., 2013; Stroud et al., 2014). Twenty-four-nucleotide small RNAs produced through the RdDM pathway target genomic regions to guide the establishment of DNA methylation by DRM2 (Cao et al., 2003).DNA methylation can be actively removed by a subfamily of bifunctional DNA glycosylases/lyases including REPRESSOR OF SILENCING1 (ROS1; Gong et al., 2002) and its paralogs DEMETER and DEMETER-LIKE2/3 (Gehring et al., 2006; Ortega-Galisteo et al., 2008). DNA methylation can also be passively lost during DNA replication when DNA methylation cannot be maintained (Zhu, 2009). Promoter RESPONSIVE TO DEHYDRATION 29A:LUCIFERASE (ProRD29A:LUC) in the ProRD29A:LUC/Promoter cauliflower mosaic virus 35S:NEOMYCIN PHOSPHOTRANSFERASE II (Pro35S:NPTII) transgenic Arabidopsis (Arabidopsis thaliana) line has been used as a marker to identify ros1 and ros3 mutants in which both ProRD29A:LUC and Pro35S:NPTII are silenced (Gong et al., 2002; Zheng et al., 2008). ROS3 is an RNA-binding protein that facilitates the function of ROS1 in active DNA demethylation at certain genomic loci. Using Pro35S:NPTII as a selection marker for kanamycin-sensitive mutants and the 35S-SUC2 transgene or a chop PCR marker for assaying DNA methylation at the 3′ region of At1g26400 from transfer DNA (T-DNA) insertion mutants, researchers recently identified two genes involved in active DNA demethylation: ROS4/INCREASED DNA METHYLATION1 (IDM1) and ROS5/IDM2 (Li et al., 2012; Qian et al., 2012, 2014; Zhao et al., 2014). ROS4/IDM1 is a plant homeodomain-finger domain-containing histone acetyltransferase that catalyzes histone H3 lysine18 (H3K18) and lysine23 (H3K23) acetylation (Li et al., 2012; Qian et al., 2012). ROS5/IDM2 is a member of the small heat shock protein family that interacts physically with ROS4/IDM1 for the regulation of active DNA demethylation. Genetic analysis indicates that ROS1, ROS4/IDM1, and ROS5/IDM2 are in the same genetic pathway and that ROS4/IDM1 and ROS5/IDM2 may form a protein complex for the regulation of active DNA demethylation (Qian et al., 2014; Zhao et al., 2014).During the genetic screening for kanamycin-sensitive mutants using the ProRD29A:LUC/Pro35S:NPTII transgenic line in this study, we identified another mutant, mbd7, where the Pro35S:NPTII transgene is specifically silenced. MBD7 is a methyl-CpG-binding domain (MBD) protein containing three MBD motifs that bind in vitro to methylated symmetric CG sites. MBD7 localizes to all highly CpG-methylated chromocenters in vivo (Zemach and Grafi, 2003; Zemach et al., 2008). Recruitment of MBD7 to chromocenters is disrupted in decrease in DNA methylation1 (ddm1) and met1, two mutants with great reductions in DNA methylation, suggesting that DNA methylation is required for proper MBD7 localization (Zemach et al., 2005). In this study, we found that MBD7 interacts physically with ROS5/IDM2 and is required for the active DNA demethylation of certain genomic loci, especially for the Gypsy-type long terminal repeat (LTR) retrotransposons with high densities of DNA methylation around chromocenters in Arabidopsis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号