首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2471篇
  免费   119篇
  国内免费   4篇
  2023年   21篇
  2022年   19篇
  2021年   79篇
  2020年   48篇
  2019年   56篇
  2018年   91篇
  2017年   62篇
  2016年   77篇
  2015年   106篇
  2014年   134篇
  2013年   191篇
  2012年   194篇
  2011年   170篇
  2010年   114篇
  2009年   107篇
  2008年   113篇
  2007年   95篇
  2006年   101篇
  2005年   84篇
  2004年   76篇
  2003年   64篇
  2002年   68篇
  2001年   49篇
  2000年   44篇
  1999年   36篇
  1998年   12篇
  1997年   7篇
  1996年   16篇
  1995年   10篇
  1994年   12篇
  1993年   6篇
  1992年   22篇
  1991年   22篇
  1990年   16篇
  1989年   27篇
  1988年   24篇
  1987年   23篇
  1986年   17篇
  1985年   18篇
  1984年   21篇
  1983年   7篇
  1982年   15篇
  1981年   8篇
  1980年   10篇
  1979年   19篇
  1978年   12篇
  1977年   13篇
  1976年   9篇
  1975年   7篇
  1970年   5篇
排序方式: 共有2594条查询结果,搜索用时 187 毫秒
91.
Protein–protein interactions (PPI) are a new emerging class of novel therapeutic targets. In order to probe these interactions, computational tools provide a convenient and quick method towards the development of therapeutics. Keeping this in view the present study was initiated to analyse interaction of tumour suppressor protein p53 (TP53) and breast cancer associated protein (BRCA1) as promising target against breast cancer. Using computational approaches such as protein–protein docking, hot spot analyses, molecular docking and molecular dynamics simulation (MDS), stepwise analyses of the interactions of the wild type and mutant TP53 with that of wild type BRCA1 and their modulation by alkaloids were done. Protein–protein docking method was used to generate both wild type and mutant complexes of TP53-BRCA1. Subsequently, the complexes were docked using sixteen different alkaloids, fulfilling ADMET and Lipinski’s rule of five criteria, and were compared with that of a well-known inhibitor of PPI, namely nutlin. The alkaloid dicentrine was found to be the best docked alkaloid among all the docked alklaloids as well as that of nutlin. Furthermore, MDS analyses of both wild type and mutant complexes with the best docked alkaloid i.e. dicentrine, revealed higher stability of mutant complex than that of the wild one, in terms of average RMSD, RMSF and binding free energy, corroborating the results of docking. Results suggested more pronounced interaction of BRCA1 with mutant TP53 leading to increased expression of mutated TP53 thus showing a dominant negative gain of function and hampering wild type TP53 function leading to tumour progression.  相似文献   
92.
93.
To evaluate the biological preference of [Yb(phen)2(OH2)Cl3](H2O)2 (phen is 1,10-phenanthroline) for DNA, interaction of Yb(III) complex with DNA in Tris–HCl buffer is studied by various biophysical and spectroscopic techniques which reveal that the complex binds to DNA. The results of fluorescence titration reveal that [Yb(phen)2(OH2)Cl3](H2O)2 has strongly quenched in the presence of DNA. The binding site number n, apparent binding constant K b, and the Stern–Volmer quenching constant K SV are determined. ΔH 0, ΔS 0, and ΔG 0 are obtained based on the quenching constants and thermodynamic theory (ΔH 0?>?0, ΔS 0?>?0, and ΔG 0?<?0). The experimental results show that the Yb(III) complex binds to DNA by non-intercalative mode. Groove binding is the preferred mode of interaction for [Yb(phen)2(OH2)Cl3](H2O)2 to DNA. The DNA cleavage results show that in the absence of any reducing agent, Yb(III) complex can cleave DNA. The antimicrobial screening tests are also recorded and give good results in the presence of Yb(III) complex.  相似文献   
94.
Protein aggregation is related to a series of pathological disorders the main cause of which are the fibrillar species generated during the process. Human serum albumin (HSA) undergoes rapid fibrillation in the presence of Cu(II) at pH 7.4 in 60% ethanol after 6-h incubation (~65?°C) followed by room temperature incubation. Here, we have investigated the effect of a stoichiometric variation of Cu(II) on the self-assembly of HSA using Congo red and thioflavin T dye-binding studies, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, fluorescence microscopy and transmission electron microscopy. The simulation of EPR spectra suggests that with the increment in Cu(II) ion concentration, there is a change in ligand field coordination. Kinetic parameters indicate reduced cooperativity that may be related to the nonspecific coordination on increment of Cu(II) concentration. Cu(II) is also able to direct the accumulation of a large number of fibers along with a formation of dense fibrillar network which is evident from microscopic images.  相似文献   
95.
Visceral leishmaniasis (VL) affects Indian subcontinent, African and South American continent, and it covers 70 countries worldwide. Visceral form of leishmaniasis is caused by Leishmania donovani in Indian subcontinent which is lethal if left untreated. Extensive resistance to antileishmanial drugs such as sodium stibogluconate, pentamidine and miltefosine and their decreased efficacy has been reported in the endemic region. Amphotericin B drug has shown good antileishmanial activity with significant toxicity, but its cost of treatment has limited the outreach of this treatment to affected people living in endemic zone. So, there is an urgent need to identify new antileishmanial drugs with excellent activity and minimal toxicity issues. Trypanothione reductase, a component of antioxidant system, is necessary for parasite growth and survival to raise infection. To develop potential inhibitor, we docked nine hundred and eighty-four 5-nitroimidazole analogues along with clomipramine which is a well-known inhibitor for TR. Total one hundred and forty-seven 5-nitroimidazole analogues with better docking score than clomipramine were chosen for ADMET and QikProp studies. Among these imidazole analogues, total twenty-four imidazole analogues and clomipramine were chosen on the basis of their ADMET, QikProp, and prime MM-GBSA study. Later on, two analogues with best MM-GBSA dG bind were undergone molecular dynamic simulation to ensure protein–ligand interactions. Using above approach, we confirm that ethyl 2-acetyl-5-[4-butyl-2-(3-hydroxypentyl)-5-nitro-1H-imidazol-1-yl]pent-2-enoate can be a drug candidate against L. donovani for the treatment of VL in the Indian subcontinent.  相似文献   
96.
Epigenetic mechanisms of plant stress responses and adaptation   总被引:3,自引:0,他引:3  
Epigenetics has become one of the hottest topics of research in plant functional genomics since it appears promising in deciphering and imparting stress-adaptive potential in crops and other plant species. Recently, numerous studies have provided new insights into the epigenetic control of stress adaptation. Epigenetic control of stress-induced phenotypic response of plants involves gene regulation. Growing evidence suggest that methylation of DNA in response to stress leads to the variation in phenotype. Transposon mobility, siRNA-mediated methylation and host methyltransferase activation have been implicated in this process. This review presents the current status of epigenetics of plant stress responses with a view to use this knowledge towards engineering plants for stress tolerance.  相似文献   
97.
Various simple mathematical models have been used to investigate dengue transmission. Some of these models explicitly model the mosquito population, while others model the mosquitoes implicitly in the transmission term. We study the impact of modeling assumptions on the dynamics of dengue in Thailand by fitting dengue hemorrhagic fever (DHF) data to simple vector–host and SIR models using Bayesian Markov chain Monte Carlo estimation. The parameter estimates obtained for both models were consistent with previous studies. Most importantly, model selection found that the SIR model was substantially better than the vector–host model for the DHF data from Thailand. Therefore, explicitly incorporating the mosquito population may not be necessary in modeling dengue transmission for some populations.  相似文献   
98.
Kinetic analysis of the DNA unwinding and translocation activities of helicases is necessary for characterization of the biochemical mechanism(s) for this class of enzymes. Saccharomyces cerevisiae Pif1 helicase was characterized using presteady state kinetics to determine rates of DNA unwinding, displacement of streptavidin from biotinylated DNA, translocation on single-stranded DNA (ssDNA), and ATP hydrolysis activities. Unwinding of substrates containing varying duplex lengths was fit globally to a model for stepwise unwinding and resulted in an unwinding rate of ∼75 bp/s and a kinetic step size of 1 base pair. Pif1 is capable of displacing streptavidin from biotinylated oligonucleotides with a linear increase in the rates as the length of the oligonucleotides increased. The rate of translocation on ssDNA was determined by measuring dissociation from varying lengths of ssDNA and is essentially the same as the rate of unwinding of dsDNA, making Pif1 an active helicase. The ATPase activity of Pif1 on ssDNA was determined using fluorescently labeled phosphate-binding protein to measure the rate of phosphate release. The quantity of phosphate released corresponds to a chemical efficiency of 0.84 ATP/nucleotides translocated. Hence, when all of the kinetic data are considered, Pif1 appears to move along DNA in single nucleotide or base pair steps, powered by hydrolysis of 1 molecule of ATP.  相似文献   
99.
100.
Quercetin, a flavonol aglycone, is one of the most abundant flavonoids with high medicinal value. The bioavailability and pharmacokinetic properties of quercetin are influenced by the type of sugars attached to the molecule. To efficiently diversify the therapeutic uses of quercetin, Escherichia coli was harnessed as a production factory by the installation of various plant and bacterial UDP-xylose sugar biosynthetic genes. The genes encoding for the UDP-xylose pathway enzymes phosphoglucomutase (nfa44530), glucose-1-phosphate uridylyltransferase (galU), UDP-glucose dehydrogenase (calS8), and UDP-glucuronic acid decarboxylase (calS9) were overexpressed in E. coli BL21 (DE3) along with a glycosyltransferase (arGt-3) from Arabidopsis thaliana. Furthermore, E. coli BL21(DE3)/?pgi, E. coli BL21(DE3)/?zwf, E. coli BL21(DE3)/?pgi?zwf, and E. coli BL21(DE3)/?pgi?zwf?ushA mutants carrying the aforementioned UDP-xylose sugar biosynthetic genes and glycosyltransferase and the galU-integrated E. coli BL21(DE3)/?pgi host harboring only calS8, calS9, and arGt-3 were constructed to enhance whole-cell bioconversion of exogeneously supplied quercetin into 3-O-xylosyl quercetin. Here, we report the highest production of 3-O-xylosyl quercetin with E. coli BL21 (DE3)/?pgi?zwf?ushA carrying UDP-xylose sugar biosynthetic genes and glycosyltransferase. The maximum concentration of 3-O-xylosyl quercetin achieved was 23.78 mg/L (54.75 μM), representing 54.75 % bioconversion, which was an ~4.8-fold higher bioconversion than that shown by E. coli BL21 (DE3) with the same set of genes when the reaction was carried out in 5-mL culture tubes with 100 μM quercetin under optimized conditions. Bioconversion was further improved by 98 % when the reaction was scaled up in a 3-L fermentor at 36 h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号