首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   17篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   12篇
  2014年   6篇
  2013年   10篇
  2012年   14篇
  2011年   7篇
  2010年   9篇
  2009年   3篇
  2008年   8篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   1篇
  2002年   7篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1968年   1篇
  1967年   4篇
  1966年   4篇
  1965年   2篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
91.
92.
RIG‐I is a well‐studied sensor of viral RNA that plays a key role in innate immunity. p97 regulates a variety of cellular events such as protein quality control, membrane reassembly, DNA repair, and the cell cycle. Here, we report a new role for p97 with Npl4‐Ufd1 as its cofactor in reducing antiviral innate immune responses by facilitating proteasomal degradation of RIG‐I. The p97 complex is able to directly bind both non‐ubiquitinated RIG‐I and the E3 ligase RNF125, promoting K48‐linked ubiquitination of RIG‐I at residue K181. Viral infection significantly strengthens the interaction between RIG‐I and the p97 complex by a conformational change of RIG‐I that exposes the CARDs and through K63‐linked ubiquitination of these CARDs. Disruption of the p97 complex enhances RIG‐I antiviral signaling. Consistently, administration of compounds targeting p97 ATPase activity was shown to inhibit viral replication and protect mice from vesicular stomatitis virus (VSV) infection. Overall, our study uncovered a previously unrecognized role for the p97 complex in protein ubiquitination and revealed the p97 complex as a potential drug target in antiviral therapy.  相似文献   
93.
The regulatory role of protons in hyphal tip growth was investigated by using membrane-permeant weak acids to acidify cytoplasm of the oomycete Saprolegnia ferax. Acetic acid decreased cytoplasmic pH from approximately pH 7.2 to 6.8, as shown by SNARF-1 measurements of cytoplasmic pH. Inhibition of growth in a dose-dependent manner by acetic, propionic, and isobutyric acid was accompanied by changes in positioning and morphology of mitochondria and nuclei, condensation of chromatin, disruptions in peripheral actin, and increases in hyphal diameter. These cellular alterations were fully reversible, and during recovery, major cytoplasmic movements and extensive apical vacuolations were observed. The results are consistent with proton regulation of the cytoskeleton, nuclear matrix, and/or chromosomes. However, a macroscopic cytoplasmic gradient of H+ in hyphae was not revealed by SNARF-1, indicating that if such a H+ gradient were required, it must occur at a finer level than we detected.  相似文献   
94.
J Marc  CL Granger  J Brincat  DD Fisher  Th Kao  AG McCubbin    RJ Cyr 《The Plant cell》1998,10(11):1927-1940
Microtubules influence morphogenesis by forming distinct geometrical arrays in the cell cortex, which in turn affect the deposition of cellulose microfibrils. Although many chemical and physical factors affect microtubule orientation, it is unclear how cortical microtubules in elongating cells maintain their ordered transverse arrays and how they reorganize into new geometries. To visualize these reorientations in living cells, we constructed a microtubule reporter gene by fusing the microtubule binding domain of the mammalian microtubule-associated protein 4 (MAP4) gene with the green fluorescent protein (GFP) gene, and transient expression of the recombinant protein in epidermal cells of fava bean was induced. The reporter protein decorates microtubules in vivo and binds to microtubules in vitro. Confocal microscopy and time-course analysis of labeled cortical arrays along the outer epidermal wall revealed the lengthening, shortening, and movement of microtubules; localized microtubule reorientations; and global microtubule reorganizations. The global microtubule orientation in some cells fluctuates about the transverse axis and may be a result of a cyclic self-correcting mechanism to maintain a net transverse orientation during cellular elongation.  相似文献   
95.

Background  

Marker Assisted Selection (MAS) is well suited to a perennial crop like oil palm, in which the economic products are not produced until several years after planting. The use of DNA markers for selection in such crops can greatly reduce the number of breeding cycles needed. With the use of DNA markers, informed decisions can be made at the nursery stage, regarding which individuals should be retained as breeding stock, which are satisfactory for agricultural production, and which should be culled. The trait associated with oil quality, measured in terms of its fatty acid composition, is an important agronomic trait that can eventually be tracked using molecular markers. This will speed up the production of new and improved oil palm planting materials.  相似文献   
96.
97.
Summary

Meiotic reinitiation has been studied in Locusta migratoria and Palaemon serratus in relation to the titre of free ecdysteroids present in the maturing oocyte. In both species meiotic reinitiation is characterized by two meiotic arrests, in prophase I and in metaphase I, and the first meiotic resumption which leads to germinal vesicle breakdown (GVBD) is correlated with increasing titres of ecdysteroids in the oocyte. Meiotic reinitiation has been successfully triggered in the oocytes of both species by incubation with physiological doses of ecdysteroids.  相似文献   
98.
Sleep deprivation, shift work, and jet lag all disrupt normal biological rhythms and have major impacts on health; however, circadian disorganization has never been shown as a causal risk factor in organ disease. We now demonstrate devastating effects of rhythm disorganization on cardiovascular and renal integrity and that interventions based on circadian principles prevent disease pathology caused by a short-period mutation (tau) of the circadian system in hamsters. The point mutation in the circadian regulatory gene, casein kinase-1epsilon, produces early onset circadian entrainment with fragmented patterns of behavior in +/tau heterozygotes. Animals die at a younger age with cardiomyopathy, extensive fibrosis, and severely impaired contractility; they also have severe renal disease with proteinuria, tubular dilation, and cellular apoptosis. On light cycles appropriate for their genotype (22 h), cyclic behavioral patterns are normalized, cardiorenal phenotype is reversed, and hearts and kidneys show normal structure and function. Moreover, hypertrophy does not develop in animals whose suprachiasmatic nucleus was ablated as young adults. Circadian organization therefore is critical for normal health and longevity, whereas chronic global asynchrony is implicated in the etiology of cardiac and renal disease.  相似文献   
99.
The renal function of the A(3) adenosine receptor (A3AR) is poorly characterized. In this study, we report that the A3AR-selective agonist, 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purine-9-yl]-1-deoxy-N-methyl-b-D-ribofuranuronamide (2-Cl-IBMECA) regulates the Na+/H+ exchanger-3 (NHE3) in a dose- and time-dependent fashion. In opossum kidney (OK) cells, 2-Cl-IBMECA at high (10(-6) M) and low (10(-8) M) dose inhibits NHE3 by a multiphasic time course with an acute phase of NHE3 inhibition from 15 min to 1 h, followed by a chronic phase of NHE3 inhibition from 24 to 48 h. Pre-incubation with either the selective A3AR-antagonist MRS1523 (10(-7) M) or the protein kinase C inhibitor, Calphostin C (10(-8) M) completely blocked 10(-6) M 2-Cl-IBMECA-induced acute (15 min) and chronic (24 h) phases of NHE3 inhibition. In contrast, the acute inhibitory phase (15 min) of 10(-8) M 2-Cl-IBMECA was completely prevented only when Calphostin C (10(-8) M) was added in conjunction with the protein kinase A inhibitor, H89 (10(-7) M). Acute (15 or 30 min depending on the A3AR-agonist concentration) A3AR-dependent inhibition of NHE3 activity was accompanied by decrease in cell surface NHE3 protein with no change in total NHE3 antigen. Chronic (24 h) A3AR-mediated down-regulation of NHE3 was associated with reduction of surface NHE3, decreased total NHE3 protein (70%) and a paradoxical rise of NHE3 RNA (40%). In summary, these results indicate that A3AR directly regulates NHE3 at multiple levels in a complex pattern. A3AR-dependent short- and long-term inhibition of NHE3 may be a fundamental mechanism of net sodium and fluid balance.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号