首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   552篇
  免费   36篇
  2023年   5篇
  2022年   3篇
  2021年   27篇
  2020年   18篇
  2019年   20篇
  2018年   17篇
  2017年   12篇
  2016年   20篇
  2015年   37篇
  2014年   41篇
  2013年   46篇
  2012年   52篇
  2011年   48篇
  2010年   26篇
  2009年   33篇
  2008年   28篇
  2007年   33篇
  2006年   32篇
  2005年   23篇
  2004年   21篇
  2003年   15篇
  2002年   14篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1993年   1篇
  1989年   3篇
  1969年   1篇
排序方式: 共有588条查询结果,搜索用时 15 毫秒
41.
The recurrent translocation t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue (MALT) lymphoma results in the expression of an API2.MALT1 fusion protein that constitutively activates NF-kappaB. The first baculovirus IAP repeat (BIR) domain of API2 and the C terminus of MALT1, which contains its caspase-like domain, are present in all reported fusion variants and interact with TRAF2 and TRAF6, respectively, suggesting their contribution to NF-kappaB signaling by API2.MALT1. Also, the involvement of BCL10 has been suggested via binding to BIR1 of API2 and via its interaction with the immunoglobulin domains of MALT1, present in half of the fusion variants. However, conflicting reports exist concerning their roles in API2.MALT1-induced NF-kappaB signaling. In this report, streptavidin pulldowns of biotinylated API2.MALT1 fusion variants showed that none of the fusion variants interacted with endogenous BCL10; its role in NF-kappaB signaling by API2.MALT1 was further questioned by RNA interference experiments. In contrast, TRAF6 was essential for NF-kappaB activation by all fusion variants, and we identified a novel TRAF6 binding site in the second immunoglobulin domain of MALT1, which enhanced NF-kappaB activation when present in the fusion protein. Furthermore, inclusion of both immunoglobulin domains in API2.MALT1 further enhanced NF-kappaB signaling via intramolecular TRAF6 activation. Finally, binding of TRAF2 to BIR1 contributed to NF-kappaB activation by API2.MALT1, although additional mechanisms involving BIR1-mediated raft association are also important. Taken together, these data reveal distinct mechanisms of NF-kappaB activation by the different API2.MALT1 fusion variants with an essential role for TRAF6.  相似文献   
42.
Polyploidy is common in higher plants, and speciation in polyploid complexes is usually the result of reticulate evolution. We examined variation in nuclear AFLP fingerprints, nuclear isozymes, and hypervariable plastid DNA loci to describe speciation patterns and species relationships in the Dactylorhiza incarnata/maculata polyploid complex (marsh orchids; Orchidaceae) in Greece. Several endemic taxa with restricted distribution have been described from this area, and to propose meaningful conservation priorities, detailed relationships need to be known. We identified four independently derived allopolyploid lineages, which is a pattern poorly correlated with prevailing taxonomy. Three lineages were composed of populations restricted to small areas and may be of recent origins from extant parental lineages. One lineage with wide distribution in northern Greece was characterized by several unique plastid haplotypes that were phylogenetically related and evidently older. The D. incarnata/maculata polyploid complex in Greece has high levels of genetic diversity at the polyploid level. This diversity has accumulated over a long time and may include genetic variants originating from now extinct parental populations. Our data also indicate that the Balkans may have constituted an important refuge from which northern European Dactylorhiza were recruited after the Weichselian ice age.  相似文献   
43.
Habitat loss and fragmentation are known to reduce patch sizes and increase their isolation, consequently leading to modifications in species richness and community structure. Calcareous grasslands are among the richest ecosystems in Europe for insect species. About 10% (1,150 ha) of the total area of a calcareous ridge region (Calestienne, Belgium) and its butterfly community was analysed over a timeframe of about 100 years. Since 1905 to present day (2005), the Calestienne region has undergone both calcareous grassland loss and fragmentation: not only did calcareous grassland size decrease and isolation increase, but also, the number of calcareous grassland patches within the landscape increased until 1965, and subsequently decreased, clearly reflecting the effects of fragmentation. These processes have had a profound effect on the butterfly community: extinction and rarefaction affected significantly more often specialist species, which means that generalist species are more and more overrepresented. This ecological drift, i.e. the replacement of specialists by generalists in species assemblages is likely to be a general effect of habitat loss and fragmentation on natural communities.  相似文献   
44.
Bacterial nodulation factors (NFs) are essential signaling molecules for the initiation of a nitrogen-fixing symbiosis in legumes. NFs are perceived by the plant and trigger both local and distant responses, such as curling of root hairs and cortical cell divisions. In addition to their requirement at the start, NFs are produced by bacteria that reside within infection threads. To analyze the role of NFs at later infection stages, several phases of nodulation were studied by detailed light and electron microscopy after coinoculation of adventitious root primordia of Sesbania rostrata with a mixture of Azorhizobium caulinodans mutants ORS571-V44 and ORS571-X15. These mutants are deficient in NF production or surface polysaccharide synthesis, respectively, but they can complement each other, resulting in functional nodules occupied by ORS571-V44. The lack of NFs within the infection threads was confirmed by the absence of expression of an early NF-induced marker, leghemoglobin 6 of S. rostrata. NF production within the infection threads is shown to be necessary for proper infection thread growth and for synchronization of nodule formation with bacterial invasion. However, local production of NFs by bacteria that are taken up by the plant cells at the stage of bacteroid formation is not required for correct symbiosome development.  相似文献   
45.
Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer's disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [14C]fructose or its AGE‐prone metabolite [14C]glyceraldehyde into rat neocortex in vivo led to formation of 14C‐labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [14C]fructose‐labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. This was supported by high expression of hexokinase 1, which channels fructose into glycolysis, and whose activity was similar with fructose or glucose as substrates. By contrast, the fructose‐specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only 4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. The genes encoding aldose reductase and sorbitol dehydrogenase, enzymes of the polyol pathway that forms glucose from fructose, were expressed in rat neocortex. These results point to fructose being transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity.

  相似文献   

46.
Most molecular processes during plant development occur with a particular spatio-temporal specificity. Thus far, it has remained technically challenging to capture dynamic protein-protein interactions within a growing organ, where the interplay between cell division and cell expansion is instrumental. Here, we combined high-resolution sampling of the growing maize (Zea mays) leaf with tandem affinity purification followed by mass spectrometry. Our results indicate that the growth-regulating SWI/SNF chromatin remodeling complex associated with ANGUSTIFOLIA3 (AN3) was conserved within growing organs and between dicots and monocots. Moreover, we were able to demonstrate the dynamics of the AN3-interacting proteins within the growing leaf, since copurified GROWTH-REGULATING FACTORs (GRFs) varied throughout the growing leaf. Indeed, GRF1, GRF6, GRF7, GRF12, GRF15, and GRF17 were significantly enriched in the division zone of the growing leaf, while GRF4 and GRF10 levels were comparable between division zone and expansion zone in the growing leaf. These dynamics were also reflected at the mRNA and protein levels, indicating tight developmental regulation of the AN3-associated chromatin remodeling complex. In addition, the phenotypes of maize plants overexpressing miRNA396a-resistant GRF1 support a model proposing that distinct associations of the chromatin remodeling complex with specific GRFs tightly regulate the transition between cell division and cell expansion. Together, our data demonstrate that advancing from static to dynamic protein-protein interaction analysis in a growing organ adds insights in how developmental switches are regulated.  相似文献   
47.
48.
IntroductionThe pleiotropic cytokine interleukin-6 (IL-6) plays an important role in the pathogenesis of different diseases, including rheumatoid arthritis (RA). ALX-0061 is a bispecific Nanobody® with a high affinity and potency for IL-6 receptor (IL-6R), combined with an extended half-life by targeting human serum albumin. We describe here the relevant aspects of its in vitro and in vivo pharmacology.MethodsALX-0061 is composed of an affinity-matured IL-6R-targeting domain fused to an albumin-binding domain representing a minimized two-domain structure. A panel of different in vitro assays was used to characterize the biological activities of ALX-0061. The pharmacological properties of ALX-0061 were examined in cynomolgus monkeys, using plasma levels of total soluble (s)IL-6R as pharmacodynamic marker. Therapeutic effect was evaluated in a human IL-6-induced acute phase response model in the same species, and in a collagen-induced arthritis (CIA) model in rhesus monkeys, using tocilizumab as positive control.ResultsALX-0061 was designed to confer the desired pharmacological properties. A 200-fold increase of target affinity was obtained through affinity maturation of the parental domain. The high affinity for sIL-6R (0.19 pM) translated to a concentration-dependent and complete neutralization of sIL-6R in vitro. In cynomolgus monkeys, ALX-0061 showed a dose-dependent and complete inhibition of hIL-6-induced inflammatory parameters, including plasma levels of C-reactive protein (CRP), fibrinogen and platelets. An apparent plasma half-life of 6.6 days was observed after a single intravenous administration of 10 mg/kg ALX-0061 in cynomolgus monkeys, similar to the estimated expected half-life of serum albumin. ALX-0061 and tocilizumab demonstrated a marked decrease in serum CRP levels in a non-human primate CIA model. Clinical effect was confirmed in animals with active drug exposure throughout the study duration.ConclusionsALX-0061 represents a minimized bispecific biotherapeutic of 26 kDa, nearly six times smaller than monoclonal antibodies. High in vitro affinity and potency was demonstrated. Albumin binding as a half-life extension technology resulted in describable and expected pharmacokinetics. Strong IL-6R engagement was shown to translate to in vivo effect in non-human primates, demonstrated via biomarker deregulation as well as clinical effect. Presented results on preclinical pharmacological properties of ALX-0061 are supportive of clinical development in RA.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0651-0) contains supplementary material, which is available to authorized users.  相似文献   
49.
Bergman and converse Bergman rules, amongst others, describe latitudinal variation in size of organisms, including flying ectotherms like butterflies. However, geographic clines in morphological traits of functional significance for flight performance and thermoregulation may also exist, although they have received less attention within a biogeographical context. Variation in flight‐related morphology has often been studied relative to landscape structure. However, the extent to which landscape effects interact with latitudinal clines of phenotypic variation has rarely been tested. Here we address the effect of latitude, landscape type and the interaction effect on body size and flight‐related morphology in the speckled wood butterfly Pararge aegeria. Male adult butterflies were collected from two replicate populations in each agricultural and woodland landscape types along a 700 km cline in six latitudinal zones. Overall size, adult body mass and wing area increased with latitude in line with Bergmann's rule. Forewing length, however, decreased with latitude. As predicted from thermoregulatory needs in ectotherms, the basal wing part was darker to the north. Latitudinal trends for flight‐related morphological traits were opposite to predictions about flight endurance under cooler conditions that were observed in some non‐lepidopteran insects, i.e. wing loading increased and wing aspect ratio decreased with latitude. Opposite trends can, however, be explained by other aspects of butterfly flight performance (i.e. mate‐location behaviour). As predicted from differences in environmental buffering in woodland landscapes along the latitudinal gradient, significant landscape×latitude interaction effects indicated stronger latitudinal clines and stronger phenotypic variation for size and flight morphology in the agricultural landscape compared to the woodland landscape. In agreement with significant interaction effects, morphological differentiation increased with latitude and was higher between population pairs of agricultural landscape than between population pairs of woodland landscape. These results demonstrate that landscape, latitude and their interaction contribute to the understanding of the complex geographic variation in P. aegeria adult phenotypes across Europe.  相似文献   
50.
The limit dextrinase inhibitor (LDI) from barley seeds acts specifically on limit dextrinase (LD), an endogenous starch debranching enzyme. LDI is a 14 kDa hydrophobic protein containing four disulfide bonds and one unpaired thiol group previously found to be either glutathionylated or cysteinylated. It is a member of the so-called CM-protein family that includes α-amylase and serine protease inhibitors, which have been extremely challenging to produce recombinantly in functional form and in good yields. Here, LDI is produced in very high yields by secretory expression by Pichia pastoris applying high cell-density fermentation in a 5L fed-batch bioreactor. Thus about 200mg of LDI, which showed twofold higher inhibitory activity towards LD than LDI from barley seeds, was purified from 1L of culture supernatant by His-tag affinity chromatography and gel filtration. Electrospray ionization mass spectrometry verified the identity of the produced glutathionylated LDI-His(6). At a 1:1M ratio the recombinant LDI completely inhibited hydrolysis of pullulan catalyzed by 5-10 nM LD. LDI retained stability in the pH 2-12 range and at pH 6.5 displayed a half-life of 53 and 33 min at 90 and 93°C, respectively. The efficient heterologous production of LDI suggests secretory expression by P. pastoris to be a promising strategy to obtain other recombinant CM-proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号