首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1367篇
  免费   124篇
  2023年   6篇
  2022年   15篇
  2021年   41篇
  2020年   24篇
  2019年   25篇
  2018年   34篇
  2017年   28篇
  2016年   39篇
  2015年   44篇
  2014年   52篇
  2013年   84篇
  2012年   90篇
  2011年   98篇
  2010年   47篇
  2009年   43篇
  2008年   50篇
  2007年   83篇
  2006年   57篇
  2005年   45篇
  2004年   56篇
  2003年   39篇
  2002年   31篇
  2001年   35篇
  2000年   29篇
  1999年   27篇
  1998年   13篇
  1997年   11篇
  1995年   9篇
  1994年   11篇
  1993年   7篇
  1992年   26篇
  1991年   28篇
  1990年   24篇
  1989年   26篇
  1988年   14篇
  1987年   12篇
  1986年   12篇
  1985年   16篇
  1984年   8篇
  1983年   7篇
  1981年   7篇
  1980年   6篇
  1979年   16篇
  1978年   16篇
  1977年   6篇
  1976年   6篇
  1973年   7篇
  1972年   10篇
  1971年   9篇
  1966年   7篇
排序方式: 共有1491条查询结果,搜索用时 15 毫秒
151.
152.
While being devoid of the ability to recognize ligands itself, the WW2 domain is believed to aid ligand binding to the WW1 domain in the context of a WW1–WW2 tandem module of WW domain‐containing oxidoreductase (WWOX) tumor suppressor. In an effort to test the generality of this hypothesis, we have undertaken here a detailed biophysical analysis of the binding of WW domains of WWOX alone and in the context of the WW1–WW2 tandem module to an array of putative proline‐proline‐x–tyrosine (PPXY) ligands. Our data show that while the WW1 domain of WWOX binds to all ligands in a physiologically relevant manner, the WW2 domain does not. Moreover, ligand binding to the WW1 domain in the context of the WW1–WW2 tandem module is two‐to‐three‐fold stronger than when treated alone. We also provide evidence that the WW domains within the WW1–WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. Of particular note is the observation that the physical association of the WW2 domain with WW1 blocks access to ligands. Consequently, ligand binding to the WW1 domain not only results in the displacement of the WW2 lid but also disrupts the physical association of WW domains in the liganded conformation. Taken together, our study underscores a key role of allosteric communication in the ability of the WW2 orphan domain to chaperone physiological action of the WW1 domain within the context of the WW1–WW2 tandem module of WWOX. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
153.
154.
Zhu Z  Bhat KM 《Mechanisms of development》2011,128(7-10):483-495
The Hem/Kette/Nap1 protein is involved in many biological processes. We have recently reported that Hem is required for the normal migration of neurons in the Drosophila embryo. In this paper, we report that Hem regulates the asymmetric division of neural precursor cells. We find that a well-studied Hem/Kette mutant allele produces at least two main, but possibly more, phenotypic classes of mutant embryos, and these phenotypes correlate with variable levels of maternal wild type Hem protein in the developing embryo. While the weaker class exhibits weak axon guidance defect and the mis-migration of neurons, the stronger class causes severe axon guidance defects, mis-migration of neurons and symmetric division of ganglion mother cells (GMC) of the RP2/sib lineage. We also show that the basis for the loss of asymmetric division is due to non-localization of Inscuteable and Numb in GMC-1. A non-asymmetric Numb segregates to both daughter cells of GMC-1, which then prevents Notch signaling from specifying a sib fate. This causes both cells to adopt an RP2 fate. Furthermore, loss of function for Abelson tyrosine kinase also causes loss of asymmetric localization of Inscuteable and Numb and symmetric division of GMC-1, the loss of function for WAVE has a very weakly penetrant loss of asymmetry defect. These results define another role for Hem/Kette/Nap1 in a neural precursor cell during neurogenesis.  相似文献   
155.
156.
Mycalamide B (MycB) is a marine sponge-derived natural product with potent antitumor activity. Although it has been shown to inhibit protein synthesis, the molecular mechanism of action by MycB remains incompletely understood. We verified the inhibition of translation elongation by in vitro HCV IRES dual luciferase assays, ribosome assembly, and in vivo [(35)S]methinione labeling experiments. Similar to cycloheximide (CHX), MycB inhibits translation elongation through blockade of eEF2-mediated translocation without affecting the eEF1A-mediated loading of tRNA onto the ribosome, AUG recognition, or dipeptide synthesis. Using chemical footprinting, we identified the MycB binding site proximal to the C3993 28S rRNA residue on the large ribosomal subunit. However, there are also subtle, but significant differences in the detailed mechanisms of action of MycB and CHX. First, MycB arrests the ribosome on the mRNA one codon ahead of CHX. Second, MycB specifically blocked tRNA binding to the E-site of the large ribosomal subunit. Moreover, they display different polysome profiles in vivo. Together, these observations shed new light on the mechanism of inhibition of translation elongation by MycB.  相似文献   
157.
Adherens and tight junctions play key roles in assembling epithelia and maintaining barriers. In cell culture zonula occludens (ZO)-family proteins are important for assembly/maturation of both tight and adherens junctions (AJs). Genetic studies suggest that ZO proteins are important during normal development, but interpretation of mouse and fly studies is limited by genetic redundancy and/or a lack of null alleles. We generated null alleles of the single Drosophila ZO protein Polychaetoid (Pyd). Most embryos lacking Pyd die with striking defects in morphogenesis of embryonic epithelia including the epidermis, segmental grooves, and tracheal system. Pyd loss does not dramatically affect AJ protein localization or initial localization of actin and myosin during dorsal closure. However, Pyd loss does affect several cell behaviors that drive dorsal closure. The defects, which include segmental grooves that fail to retract, a disrupted leading edge actin cable, and reduced zippering as leading edges meet, closely resemble defects in canoe zygotic null mutants and in embryos lacking the actin regulator Enabled (Ena), suggesting that these proteins act together. Canoe (Cno) and Pyd are required for proper Ena localization during dorsal closure, and strong genetic interactions suggest that Cno, Pyd, and Ena act together in regulating or anchoring the actin cytoskeleton during dorsal closure.  相似文献   
158.
159.
GMP synthetase is a glutamine amidotransferase that incorporates ammonia derived from glutamine into the nucleotide xanthosine 5'-monophosphate (XMP) to form guanosine 5'-monophosphate (GMP). Functional coordination of domains in glutamine amidotransferases leads to upregulation of glutamine hydrolysis in the presence of acceptor substrates and is a common feature in this class of enzymes. We have shown earlier that binding of substrates to the acceptor domain of Plasmodium falciparum GMP synthetase (PfGMPS) leads to enhancement in both glutaminase activity and rate of glutaminase inactivation, by the irreversible inhibitors acivicin and diazo-oxonorleucine [Bhat JY et al. (2008) Biochem J409, 263-273], a process that must be driven by conformational alterations. In this paper, through the combined use of biochemical assays, optical spectroscopy and mass spectrometry, we demonstrate that PfGMPS undergoes conformational transitions upon binding of substrates to the acceptor domain. Limited proteolysis and hydrogen-deuterium exchange in conjunction with mass spectrometry unveil region-specific conformational changes in the ATP + XMP bound state of PfGMPS. Decreased accessibility of R294 and K428 residues to trypsin in the ATP pyrophosphatase domain and reduced deuterium incorporation in the 143-155 region, pertaining to the glutaminase domain, suggest that in PfGMPS ligand-induced conformational changes are not only local but also transmitted over a long range across the domains. Overall, these results provide a detailed understanding of the substrate-induced changes in PfGMPS that could be essential for the overall catalytic process.  相似文献   
160.
Septate junctions (SJs) display a unique ultrastructural morphology with ladder-like electron densities that are conserved through evolution. Genetic and molecular analyses have identified a highly conserved core complex of SJ proteins consisting of three cell adhesion molecules Neurexin IV, Contactin, and Neuroglian, which interact with the cytoskeletal FERM domain protein Coracle. How these individual proteins interact to form the septal arrays that create the paracellular barrier is poorly understood. Here, we show that point mutations that map to specific domains of neurexin IV lead to formation of fewer septae and disorganization of SJs. Consistent with these observations, our in vivo domain deletion analyses identified the first Laminin G-EGF-Laminin G module in the extracellular region of Neurexin IV as necessary for the localization of and association with Contactin. Neurexin IV protein that is devoid of its cytoplasmic region is able to create septae, but fails to form a full complement of SJs. These data provide the first in vivo evidence that specific domains in Neurexin IV are required for protein-protein interactions and organization of SJs. Given the molecular conservation of SJ proteins across species, our studies may provide insights into how vertebrate axo-glial SJs are organized in myelinated axons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号