首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   8篇
  40篇
  2022年   1篇
  2021年   3篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有40条查询结果,搜索用时 0 毫秒
21.
Mouse monoclonal antibodies (MAbs) specific for potato virus M (PVM) were prepared and the properties of three of them were studied. MAb M4C1 is IgG2b, it binds with high affinity to PVM coat protein, to purified virus preparations and recognises PVM in infected potato leaves and tubers. MAb M6D5 is IgG2a and also reacts with PVM coat protein, purified PVM and with PVM in potato leaf and tuber extracts. In double-antibody sandwich ELISA (DAS ELISA) MAbs M4C1 and M6D5 reacted with all 17 PVM isolates tested. MAb M7 is IgG2b and recognises PVM only in indirect dot ELISA on nitrocellulose filters and viral coat protein on Western blots. MAbs against PVM were used as capture antibodies and europium-labelled MAbs as conjugates in time-resolved fluoroimmunoassay (EuTRFIA). The standard EuTRFIA curve of PVM detection is approximately linear over a range of PVM concentrations from 0.5 ng/ml to 1000 ng/ml. The lowest PVM concentration detectable in EuTRFIA was 0.5 ng/ml and correspondingly 6 ng/ml in DAS ELISA. The use of the europium chelate label allows PVM detection in potato leaf and tuber sap at dilutions greater than 10--4 with very low background fluorescence. EuTRFIA with MAbs, with either one or two incubations is about 10–20 times more sensitive for PVM detection than is DAS ELISA. PVM and PVX, mixed with healthy potato tuber sap, were simultaneously tested in a single sample at concentrations lower than 10 ng/ml by double-label TRFIA using europium-labelled MAbs to PVM and samarium-labelled MAbs to PVX.  相似文献   
22.
Sister chromatid pairing reactions, termed cohesion establishment, occur during S phase and appear to be regulated by replication factor C (RFC) complexes. For instance, RFCs that contain Ctf18p exhibit pro-establishment activities while those that contain Elg1p exhibit anti-establishment activities. It remains unknown whether Ctf18p-RFC and Elg1p-RFC functions are simply opposing or instead reveal complicated and non-parallel regulatory mechanisms. To better understand the nature of these novel pathways, we analyzed the small RFC subunit Rfc5p that is common to both Ctf18p-RFC and Elg1p-RFC. Despite this commonality, the data show that diminished Rfc5p function rescues ctf7/eco1 mutant cell phenotypes, revealing that Rfc5p promotes anti-establishment activities. This rescue is specific to establishment pathways in that rfc5-1 greatly accentuates growth defects when expressed in scc2 (deposition), mcd1/scc1 or smc3 (cohesion maintenance) mutated cells. Our results reveal for the first time a role for small RFC subunits in directing RFC complex functions—in this case towards anti-establishment pathways. We further report that Pds5p exhibits both establishment and anti-establishment functions in cohesion. This duality suggests that categorizations of establishment and anti-establishment activities require further examination.Key words: sister chromatid cohesion, ctf7/eco1, ELG1 RFC complexes, CTF18 RFC complexes, PDS5  相似文献   
23.
24.
25.
For successful chromosome segregation during mitosis, several processes must occur early in the cell cycle, including spindle pole duplication, DNA replication, and the establishment of cohesion between nascent sister chromatids. Spindle pole body duplication begins in G1 and continues during early S-phase as spindle pole bodies mature and start to separate. Key steps in spindle pole body duplication are the sequential recruitment of Cdc31p and Spc42p by the nuclear envelope transmembrane protein Msp3p/Nep98p (herein termed Mps3p). Concurrent with DNA replication, Ctf7p/Eco1p (herein termed Ctf7p) ensures that nascent sister chromatids are paired together, identifying the products of replication as sister chromatids. Here, we provide the first evidence that the nuclear envelope spindle pole body assembly component Mps3p performs a function critical to sister chromatid cohesion. Mps3p was identified as interacting with Ctf7p from a genome-wide two-hybrid screen, and the physical interaction was confirmed by both in vivo (co-immunoprecipitation) and in vitro (GST pull-down) assays. An in vivo cohesion assay on new mps3/nep98 alleles revealed that loss of Mps3p results in precocious sister chromatid separation and that Mps3p functions after G1, coincident with Ctf7p. Mps3p is not required for cohesion during mitosis, revealing that Mps3p functions in cohesion establishment and not maintenance. Mutated Mps3p that results in cohesion defects no longer binds to Ctf7p in vitro, demonstrating that the interaction between Mps3p and Ctf7p is physiologically relevant. In support of this model, mps3 ctf7 double mutant cells exhibit conditional synthetic lethality. These findings document a new role for Mps3p in sister chromatid cohesion and provide novel insights into the mechanism by which a spindle pole body component, when mutated, contributes to aneuploidy.  相似文献   
26.
The human CR1 was genetically engineered by site directed mutagenesis into a truncated form which was secreted from transfected Chinese hamster ovary cells. This soluble recombinant CR1 (sCR1) was purified from the supernatants of the Chinese hamster ovary cells cultured in a hollow fiber bioreactor. sCR1 inhibits the C3 and C5 convertases of the classical and the alternative pathways in vitro. The ability of sCR1 to inhibit the immune complex-mediated inflammation in vivo was tested in a rat reversed passive Arthus reaction model. Administration of sCR1 at the dermal sites reduced the Arthus vasculitis in a dose-dependent manner as judged by both gross and microscopic examination, as well as by immunohistologic localization of C3 and C5b-9 neoantigen deposits. These data suggest that sCR1 inhibits the Arthus reaction by interrupting the activation of the C cascade, hence limiting the detrimental immune complex-induced tissue damage in vivo.  相似文献   
27.

Background  

Chromatin immunoprecipitation on tiling arrays (ChIP-chip) has been employed to examine features such as protein binding and histone modifications on a genome-wide scale in a variety of cell types. Array data from the latter studies typically have a high proportion of enriched probes whose signals vary considerably (due to heterogeneity in the cell population), and this makes their normalization and downstream analysis difficult.  相似文献   
28.
HIV-1 disrupts the host epigenetic landscape with consequences for disease pathogenesis, viral persistence, and HIV-associated comorbidities. Here, we examined how soon after infection HIV-associated epigenetic changes may occur in blood and whether early initiation of antiretroviral therapy (ART) impacts epigenetic modifications. We profiled longitudinal genome-wide DNA methylation in monocytes and CD4+ T lymphocytes from 22 participants in the RV254/SEARCH010 acute HIV infection (AHI) cohort that diagnoses infection within weeks after estimated exposure and immediately initiates ART. We identified monocytes harbored 22,697 differentially methylated CpGs associated with AHI compared to 294 in CD4+ T lymphocytes. ART minimally restored less than 1% of these changes in monocytes and had no effect upon T cells. Monocyte DNA methylation patterns associated with viral load, CD4 count, CD4/CD8 ratio, and longitudinal clinical phenotypes. Our findings suggest HIV-1 rapidly embeds an epigenetic memory not mitigated by ART and support determining epigenetic signatures in precision HIV medicine.Trial Registration:NCT00782808 and NCT00796146.  相似文献   
29.
The cohesion of sister chromatids is mediated by cohesin, a protein complex containing members of the structural maintenance of chromosome (Smc) family. How cohesins tether sister chromatids is not yet understood. Here, we mutate SMC1, the gene encoding a cohesin subunit of budding yeast, by random insertion dominant negative mutagenesis to generate alleles that are highly informative for cohesin assembly and function. Cohesins mutated in the Hinge or Loop1 regions of Smc1 bind chromatin by a mechanism similar to wild-type cohesin, but fail to enrich at cohesin-associated regions (CARs) and pericentric regions. Hence, the Hinge and Loop1 regions of Smc1 are essential for the specific chromatin binding of cohesin. This specific binding and a subsequent Ctf7/Eco1-dependent step are both required for the establishment of cohesion. We propose that a cohesin or cohesin oligomer tethers the sister chromatids through two chromatin-binding events that are regulated spatially by CAR binding and temporally by Ctf7 activation, to ensure cohesins crosslink only sister chromatids.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号