首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1157篇
  免费   161篇
  1318篇
  2018年   14篇
  2016年   20篇
  2015年   31篇
  2014年   37篇
  2013年   41篇
  2012年   55篇
  2011年   50篇
  2010年   30篇
  2009年   37篇
  2008年   42篇
  2007年   36篇
  2006年   34篇
  2005年   34篇
  2004年   38篇
  2003年   34篇
  2002年   31篇
  2001年   30篇
  2000年   35篇
  1999年   33篇
  1998年   21篇
  1997年   13篇
  1996年   8篇
  1995年   20篇
  1994年   20篇
  1993年   11篇
  1992年   25篇
  1991年   25篇
  1990年   26篇
  1989年   19篇
  1988年   24篇
  1987年   21篇
  1986年   17篇
  1985年   24篇
  1984年   17篇
  1983年   9篇
  1982年   11篇
  1981年   14篇
  1980年   12篇
  1979年   20篇
  1978年   15篇
  1977年   9篇
  1976年   11篇
  1975年   18篇
  1974年   19篇
  1973年   20篇
  1972年   16篇
  1971年   9篇
  1970年   10篇
  1969年   13篇
  1968年   9篇
排序方式: 共有1318条查询结果,搜索用时 9 毫秒
61.
The historic persecution and decline of European raptor populations precipitated the use of reintroduction as a species restoration tool in the late twentieth century. One of the key requirements of the World Conservation Union reintroduction guidelines concerns the need for social feasibility studies to explore the attitudes of local human populations toward restoration and reintroduction proposals. Ahead of any formal proposals to reintroduce white‐tailed sea eagles to Cumbria, United Kingdom, we conducted a baseline public attitudinal survey (n = 300). We identified broad public support for this reintroduction, which transcended differences in the demographic, geographic, and employment profiles of the study cohort. There was public recognition that white‐tailed sea eagles could deliver a broad range of socioeconomic and environmental benefits with few detrimental impacts. Although the value of attitudinal surveys of this nature has been questioned, we would argue that they provide a useful baseline “snapshot” ahead of a more structured and focused reintroduction consultation. These results reinforce the emergence of public interest in the restoration of European raptors in the late twentieth and early twenty‐first century.  相似文献   
62.
The accumulation of mitochondrial DNA (mtDNA) mutations is a suspected driver of aging and age‐related diseases, but forestalling these changes has been a major challenge. One of the best‐studied models is the prematurely aging mtDNA mutator mouse, which carries a homozygous knock‐in of a proofreading deficient version of the catalytic subunit of mtDNA polymerase‐γ (PolgA). We investigated how voluntary exercise affects the progression of aging phenotypes in this mouse, focusing on mitochondrial and protein homeostasis in both brain and peripheral tissues. Voluntary exercise significantly ameliorated several aspects of the premature aging phenotype, including decreased locomotor activity, alopecia, and kyphosis, but did not have major effects on the decreased lifespan of mtDNA mutator mice. Exercise also decreased the mtDNA mutation load. In‐depth tissue proteomics revealed that exercise normalized the levels of about half the proteins, with the majority involved in mitochondrial function and nuclear–mitochondrial crosstalk. There was also a specific increase in the nuclear‐encoded proteins needed for the tricarboxylic acid cycle and complex II, but not in mitochondrial‐encoded oxidative phosphorylation proteins, as well as normalization of enzymes involved in coenzyme Q biosynthesis. Furthermore, we found tissue‐specific alterations, with brain coping better as compared to muscle and with motor cortex being better protected than striatum, in response to mitochondrial dysfunction. We conclude that voluntary exercise counteracts aging in mtDNA mutator mice by counteracting protein dysregulation in muscle and brain, decreasing the mtDNA mutation burden in muscle, and delaying overt aging phenotypes.  相似文献   
63.
Causes and consequences of migration by large herbivores   总被引:1,自引:0,他引:1  
Many populations of large herbivores migrate seasonally between discrete home ranges. Current evidence suggests that migration is generally selected for as a means of enhancing access to high quality food and/or reducing the risk of predation. The relative importance of these alternative selection pressures should depend on the demographic circumstances facing a given population. Seasonal migration also has important implications for the structure and dynamics of large herbivore communities. Migrants should tend to be regulated by food availability, while residents should tend to be regulated by predators As a result, migrants should often outnumber residents by a considerable margin - a pattern seen in several tropical and temperate ecosystems. Differences in the mode of regulation could also imply that competition for resources will be weak in purely resident assemblages, but strong in communities dominated by migrants. Continual grazing by resident herbivores can sometimes lead to degeneration of vegetation, while systems supporting migrants are apparently more resilient. This implies that migration can have an important impact on the long-term persistence of plant-herbivore systems, particularly in areas with slow rates of vegetation regeneration.  相似文献   
64.
Fixation of cellulose-acetate membranes with either glutaraldehyde-osmium tetroxide or glutaraldehyde-ruthenium tetroxide resulted in extensive electron beam damage. Beam damage was eliminated and the bacterial surface structure was preserved, however, when cellulose-acetate membranes were fixed with glutaraldehyderuthenium tetroxide and treated successively with thiocarbohydrazide and osmium tetroxide.  相似文献   
65.
Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing‐season studies to incorporate winter.  相似文献   
66.
67.
The mechanisms leading to structure in local assemblages are controversial. On the one hand, assemblage structure is thought to be the outcome of local interactions determined by the properties of species and their responses to the local environment. Alternatively, this structure has been shown to be an emergent property of assemblages of identical individuals or of random sampling of a regional assemblage. In ants at baits, a combination of environmental stress and interspecific competition is widely held to lead to a unimodal relationship between the abundance of dominant ants and species richness. It is thought that in comparatively adverse environments, both abundance and richness are low. As habitats become more favorable, abundance increases until the abundance of dominant ants is so high that they exclude those that are subordinate and so depress richness. Here we demonstrate empirically that this relationship is remarkably similar across three continents. Using a null model approach, we then show that the ascending part of the relationship is largely constrained to take this form not simply as a consequence of stress but also as a result of the shape of abundance frequency distributions. While the form of the species-abundance frequency distribution can also produce the descending part of the relationship, interspecific competition might lead to it too. Scatter about the relationship, which is generally not discussed in the literature, may well be a consequence of resource availability and environmental patchiness. Our results draw attention to the significance of regional processes in structuring ant assemblages.  相似文献   
68.
A novel phenomenon in which wilted cabbage leaves appeared to regain positive turgor pressures without additional water uptake has been previously reported (J Levitt [1986] Plant Physiol 82: 147-153). These experiments were replicated and the biophysical nature of turgor recovery characterized. Leaf water potential and its components were assayed in hydrated, wilted, and desiccated leaves which appeared to regain turgor after wilting. The hypotheses that turgor recovery was due to an increased volumetric elastic modulus (ε), or alternatively the result of solute redistribution were tested. Quantitative evidence that turgor recovery occurs in excised leaves was found. Leaf turgor pressure in hydrated leaves (~0.6 megapascal) decreased to zero upon wilting. After continued desiccation, turgor pressure returned to approximately 0.3 megapascal even though leaf relative water content declined. The ε of hydrated leaves was large and there was no evidence of an increased ε in the turgor-recovered leaves. Solute mobilization occurred during desiccation. The apoplastic osmotic potential decreased from −0.15 to −0.44 megapascal in hydrated and turgor-recovered leaves, respectively, and solutes were transported from the lamina to the midrib tissue. Solute redistribution coupled with the high ε may have resulted in localized turgor recovery in specific cells in the desiccated leaves.  相似文献   
69.
70.
Steady-state and dynamic methods were used to measure the conductivity to water flow in large woody root systems. The methods were destructive in that the root must be excised from the shoot but do not require removal of the root from the soil. The methods involve pushing water from the excised base of the root to the apex, causing flow in a direction opposite to that during normal transpiration. Sample data are given for two tropical (Cecropia obtusifolia and Lacistema aggregatum) and two temperate species (Acer saccharum and Juglans regia cv Lara). A hysteresis was observed in the relationship between applied pressure and resulting flow during dynamic measurements. A mathematical model (AMAIZED) was derived for the dynamics of solute and water flow in roots. The model was used to interpret results obtained from steady-state and dynamic measurements. AMAIZED is mathematically identical with the equations that describe Munch pressure flow of solute and water in the phloem of leaves. Results are discussed in terms of the predictions of AMAIZED, and suggestions for the improvement of methods are made.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号