首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   12篇
  2024年   1篇
  2023年   1篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   9篇
  2016年   6篇
  2015年   7篇
  2014年   7篇
  2013年   11篇
  2012年   12篇
  2011年   10篇
  2010年   8篇
  2009年   6篇
  2008年   11篇
  2007年   7篇
  2006年   3篇
  2005年   9篇
  2004年   8篇
  2003年   8篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   2篇
  1970年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有182条查询结果,搜索用时 265 毫秒
11.
The release of the inhibitory amino acid -alanine was investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice, using a superfusion system. The release was enhanced by -alanine itself and the structural analogs taurine and -aminobutyrate. It was dependent on Na+, but independent of Ca2+ in both mature and immature hippocampus, being thus mostly mediated by uptake carriers operating in an outward direction. The release was potentiated in the developing mice, but not affected in the adults, by the ionotropic glutamate receptor agonists N-methyl-D-aspartate, kainate, 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and tetrazolylglycine in a receptor-mediated manner. Cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and the presence of free radicals, greatly enhanced -alanine release at both ages, but more markedly in the adults. The great amounts of -alanine, together with the inhibitory amino acids taurine and -aminobutyrate, released simultaneously with the excitatory amino acids in the hippocampus may constitute an important protective mechanism against excitotoxicity, which leads to neuronal death.  相似文献   
12.
We have earlier developed a handheld ultrasound indentation instrument for the diagnosis of articular cartilage degeneration. In ultrasound indentation, cartilage is compressed with the ultrasound transducer. Tissue thickness and deformation are calculated from the A-mode ultrasound signal and the stress applied is registered with the strain gauges. In this study, the applicability of the ultrasound indentation instrument to quantify site-dependent variation in the mechano-acoustic properties of bovine knee cartilage was investigated. Osteochondral blocks (n=6 per site) were prepared from the femoral medial condyle (FMC), the lateral facet of the patello-femoral groove (LPG) and the medial tibial plateau (MTP). Cartilage stiffness (dynamic modulus, E(dyn)), as obtained with the ultrasound indentation instrument in situ, correlated highly linearly (r=0.913, p<0.01) with the values obtained using the reference material-testing device in vitro. Reproducibility (standardized coefficient of variation) of the ultrasound indentation measurements was 5.2%, 1.7% and 3.1% for E(dyn), ultrasound reflection coefficient of articular surface (R) and thickness, respectively. E(dyn) and R were site dependent (p<0.05, Kruskall-Wallis H test). E(dyn) was significantly higher (p<0.05, Kruskall-Wallis Post Hoc test) in LPG (mean+/-SD: 10.1+/-3.1MPa) than in MTP (2.9+/-1.4MPa). In FMC, E(dyn) was 4.6+/-1.3MPa. R was significantly (p<0.05) lower at MTP (2.0+/-0.7%) than at other sites (FMC: 4.2+/-0.9%; LPG: 4.4+/-0.8%). Cartilage glycosaminoglycan concentration, as quantified with the digital densitometry, correlated positively with E(dyn) (r=0.678, p<0.01) and especially with the equilibrium Young's modulus (reference device, r=0.874, p<0.01) but it was not associated with R (r=0.294, p=0.24). We conclude that manual measurements are reproducible and the instrument may be used for detection of cartilage quality in situ. Especially, combined measurement of thickness, E(dyn) and R provides valuable diagnostic information on cartilage status.  相似文献   
13.
The inhibitory neuromodulator taurine is involved in osmoregulation and cell volume adjustments in the central nervous system. In addition, taurine protects neural cells from excitotoxicity and prevents harmful metabolic events evoked by cell-damaging conditions. The release of taurine in nervous cell preparations is greatly enhanced by glutamate receptor agonists and various cell-damaging conditions. NO-generating compounds also increase taurine release in the mouse hippocampus. The further involvement of the NO/cGMP pathway and protein kinases in preloaded [3H]taurine release from hippocampal slices from adult (3-month-old) and developing (7-day-old) mice in normoxia and in ischemia was now studied using a superfusion system. The release was enhanced by 8-Br-cGMP and the phosphodiesterase inhibitor 2-(2-propyloxyphenyl)-8-azapurin-6-one (zaprinast), particularly in the immature hippocampus, indicating that increased cGMP levels induce taurine release. The release was also increased by the inhibitor of soluble guanylyl cyclase, 1H-(1,2,4)oxadiazolo-(4,3a)quinoxalin-1-one (ODQ) and the protein kinase C activator 4-phorbol 12-myristate 13-acetate (PMA), but only in the adult hippocampus. The ischemia-induced release was also enhanced by increased cGMP levels in both adult and developing mice, whereas protein kinase inhibitors had no effects in any conditions. The results demonstrate that cGMP is able to modulate hippocampal taurine release in both adult and developing mice, the rise in cGMP levels evoking taurine release in normoxia and in ischemia. This could be part of the neuroprotective properties of taurine, being thus important particularly in cell-damaging conditions and in preventing excitotoxicity.  相似文献   
14.
Glutathione (GSH), a general antioxidant and detoxifying compound, is the most abundant thiol-containing peptide in the central nervous system. It has been earlier shown to regulate the functions of glutamate receptors and to possess specific binding sites in both neurons and glial cells. The possible involvement of disulfide bonds, cysteinyl, arginyl, lysyl, glutamyl, and aspartyl residues in the binding of tritiated GSH to specific sites in pig cerebral cortical synaptic membranes was now studied after covalent modification of membrane proteins. Treatment of synaptic membranes with the thiol-modifying reagents 5,5-dithio-bis(2-nitrobenzoate) (DTNB) and 4,4-dithiodipyridine (DDP) dramatically enhanced the binding of [3H]GSH in a dose-dependent manner. Dithiothreitol (DTT) alone reduced the binding, but pretreatment of the membranes with DTT potentiated the enhancing effect of DTNB. On the other hand, when the modification with DTNB was followed by treatment with DTT, the enhancement by DTNB was completely reversed. N-ethylmaleimide, a thiol alkylating agent, and phenylisothiocyanate, a thiol- and amino-group modifying compound, reduced the binding, and their effects were additive. The guanidino-modifying agent phenylglyoxal reduced the binding but the carboxyl-modifying reagent 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide had no significant effect. The results indicate that cysteinyl side chains and disulfide bonds are essential in the binding of GSH to membrane proteins and that arginyl and lysyl side chains may also be directly involved in this process.  相似文献   
15.
One possible explanation of the maintenance of many historical foci of sleeping sickness in Central Africa could be the existence of a wild animal reservoir. In this study, PCR was used to detect the different trypanosome species present in wild animal captured by hunters in the southern forest belt of Cameroon (Bipindi). Trypanosomes were also detected by a parasitological method (Quantitative buffy coat: QBC). Parasite could not be isolated in culture medium (Kit for in vitro isolation: KIVI). Specific primers of T. brucei s.l., T. congolense forest type, T. congolense savannah type, T. vivax, T. simiae and T. b. gambiense group 1 were used to identify parasites in the blood of 164 animals belonging to 24 different species including ungulates, rodents, pangolins, carnivores, reptiles and primates. Of the 24 studied species, eight were carrying T. b. gambiense group 1. Those parasites pathogenic to man were found in monkeys (Cercocebus torquatus and Cercopithecus nictitans), in ungulates (Cephalophus dorsalis and C. monticola), in carnivores (Nandinia binotata and Genetta servalina) and in rodents (Cricetomys gambianus and Atherurus africanus). 13 species (54%) were carrying T. brucei s.l. identified as non-gambiense group 1.  相似文献   
16.
The purpose of this study was to examine power-type athletes to determine changes in amino acid and hormone concentrations in circulating blood following 2 different high-intensity exercise sessions before and after the 5-week training period. Eleven competitive male sprinters and jumpers performed 2 different running exercise sessions: a short run session (SRS) of 3 x 4 x 60 m (intensity of 91-95%) with recoveries of 120 and 360 seconds, and a long run session (LRS) with 20-second intervals (intensity of 56-100%) with recoveries of 100 seconds to exhaustion. The concentrations of serum amino acids, hormones, and lactate were determined from the blood samples drawn after an overnight fast and 10 minutes before and after both SRS and LRS. The average blood lactate concentrations were 12.7 +/- 1.6 mmol;pdL(-1) and 16.6 +/- 1.4 mmol;pdL(-1) (p < 0.01) following SRS and LRS, respectively. The average total running time was longer (p < 0.001) following LRS (164 +/- 20 seconds) than following SRS (91 +/- 8 seconds). The fasting levels of all amino acids decreased (p = 0.024; 19.4%) after the 5-week period, whereas an increase (p = 0.007; 24.5%) was observed in the fasting concentration of testosterone (TE). The exercise sessions induced no changes in the total sum of all amino acids, but significant increases or decreases were observed in single amino acids. When the range of the relative concentration changes before and after the training period was compared, significant decreases were found in valine (p = 0.048), asparagine (p = 0.029), and taurine (p = 0.030) following SRS. There were significant increases in the absolute hormonal concentration changes following LRS with TE (p = 0.002; 30.4%), cortisol (COR; p = 0.006; 12.0%), and in the TE/COR ratio (p = 0.047; 21.0%) but not in the concentration of growth hormone (GH). The results of the study indicate that the speed and strength training period strongly decreases the fasting concentrations of amino acids in the power-trained athletes in a good anabolic state with the daily protein intake of 1.26 g;pdkg(-1) body weight. At the same time the intensive lactic exercise session induces strong decreases, especially in valine, asparagine, and taurine.  相似文献   
17.
The major part of hippocampal innervation is glutamatergic, regulated by inhibitory GABA-releasing interneurons. The modulation of [(3)H]GABA release by ionotropic and metabotropic glutamate receptors and by nitric oxide was here characterized in superfused mouse hippocampal slices. The ionotropic glutamate receptor agonists kainate, N-methyl-D-aspartate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate potentiated the basal GABA release. These effects were blocked by their respective antagonists 6-nitro-7-cyanoquinoxaline-2,3-dione (CNQX), dizocilpine and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide (NBQX), indicating receptor-mediated mechanisms. The NO-generating compounds S-nitroso-N-acetylpenicillamine (SNAP), sodiumnitroprusside and hydroxylamine enhanced the basal GABA release. Particularly the sodiumnitroprusside-evoked release was attenuated by the NO synthase inhibitor N(G)-nitro-L-arginine (L-NNA) and the inhibitor of soluble guanylyl cyclase 1H-(1,2,4)oxadiazolo(4,3a)quinoxalin-1-one (ODQ), indicating the involvement of the NO/cGMP pathway. This inference is corroborated by the enhancing effect of zaprinast, a phosphodiesterase inhibitor, which is known to increase cGMP levels. The K(+)-stimulated hippocampal GABA release was reduced by the groups I and III agonists of metabotropic glutamate receptors (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylate (t-ACPD) and L-(+)-2-amino-4-phosphonobutyrate (L-AP4), which effects were abolished by their respective antagonists (RS)-1-aminoindan-1,5-dicarboxylate (AIDA) and (RS)-2-cyclopropyl-4-phosphonophenylglycine (CPPG), again indicating modification by receptor-mediated mechanisms.  相似文献   
18.
The cytosolic release of L-glutamate has been held to be responsible for the increase in extracellular glutamate to toxic levels in the brain. The mechanism and regulation of this release was now studied in cerebral cortical and striatal slices with D-[3H]aspartate, a non-metabolized analogue of L-glutamate and a poor substrate for vesicular uptake. L-Glutamate and D-aspartate strongly stimulated the release in a concentration-dependent manner. Of the ionotropic glutamate receptor agonists, only kainate enhanced the basal release in the striatum. Of the metabotropic glutamate receptor ligands, the group I agonist (S)-3,5-dihydroxyphenylglycine (S-DHPG) failed to affect the basal release but inhibited the D-aspartate-evoked release in the striatum. The group I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) had no effect on the basal release in either preparation but enhanced the L-glutamate-evoked release and inhibited the D-aspartate-evoked release in the striatum, not however in the cerebral cortex. The group II agonist (2S,2R,3R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG IV) and the group II antagonist (2S)-2-ethylglutamate (EGLU) were without effect on the basal, D-aspartate- and L-glutamate-evoked releases of D-[3H]aspartate in either preparation. The group III agonist L-serine-O-phosphate (L-SOP) failed to affect the basal release but reduced the D-aspartate-evoked release in the striatum. The group III antagonist (RS)-methylserine-O-phosphate (MSOP) failed to affect the basal release but increased the glutamate-evoked release and inhibited the D-aspartate-evoked release in the striatum. Both L-trans-pyrrolidine-2,4-dicarboxylate (L-trans-PDC) and (2S, 1S, 2R)-2-carboxycyclopropyl)glycine (L-CCG-III), transportable inhibitors of the high-affinity glutamate uptake, enhanced the basal release, more strongly in the striatum than in the cerebral cortex. L-CCG-III also increased the L-glutamate-evoked release in the striatum. Nontransportable dihydrokainate enhanced the basal release much less and failed to affect the glutamate-evoked release. The results indicate that the release of glutamate from cytosolic pools is carrier-mediated via homoexchange. This process is regulated in the striatum by metabotropic group I and group III receptors in a manner different from the regulation of the vesicular release of glutamate from presynaptic terminals.  相似文献   
19.
Forces that are able to transport Na+ and K+ into two compartments were investigated. A modified Nernst-Planck equation for coupled flows of electric current, water, and ions was integrated. The result shows that if alkali ions in the ion channel of the cell membrane are separated by their electric-current-induced inward flows against an electro-osmotic outward flow of water, the logarithms of the stationary cell/medium distributions of these ions should be proportional to the inverse of their diffusion mobilities. The relationship was tested in human erythrocytes. From inward and outward movements of tracer alkali ions, calculations were made to obtain their stationary distributions at infinite time. The cell/medium distributions determined in this way at 38 degrees C are Li+ = 0.59, 22Na+ = 0.044, 42K+ = 10.0, 86Rb+ = 11.9, and 137Cs+ = 3.07. The entry rates of ions into the cell at 0 degrees C are understood to represent their diffusion mobilities in the pump channel. The entry rates are Li+ = 1.44, 2Na+ = 1, 42K+ = 2.22, 86Rb+ = 2.39, and 137Cs+ = 1.72 relative to that of 22Na+. There is an expected negative correlation between the logarithms of the stationary cell/ medium distributions at 38 degrees C and the inverse of the entry rates into the cell at 0 degrees C for the five ions. It is suggested that the proposed physical forces cause the separation of alkali ions in the channel of Na,K-ATPase.  相似文献   
20.
Female mating preferences are often based on more than one cue.In empirical studies, however, different mate choice cues aretypically treated separately ignoring their possible interactions.In the current work, we studied how male body size and sizeof the male's nest jointly affect mate preferences of femalesand gobies, Pomatoschistus minutus. The females were givena binary choice between males that differed either in body sizeor size of their nest or both. We found that neither body sizenor size of the nest alone affected male attractiveness, buttogether these 2 cues had a significant effect. Specifically,large males were more popular among females when they had alarge nest than when they occupied a small nest. The resultssuggest that if interaction effects between multiple mate choicecues are not considered, there is a danger of ignoring or underestimatingthe importance of these cues in sexual selection by female choice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号