首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1174篇
  免费   60篇
  2023年   6篇
  2022年   8篇
  2021年   29篇
  2020年   15篇
  2019年   21篇
  2018年   24篇
  2017年   32篇
  2016年   36篇
  2015年   48篇
  2014年   60篇
  2013年   76篇
  2012年   97篇
  2011年   94篇
  2010年   60篇
  2009年   63篇
  2008年   72篇
  2007年   74篇
  2006年   71篇
  2005年   51篇
  2004年   60篇
  2003年   51篇
  2002年   51篇
  2001年   7篇
  2000年   10篇
  1999年   12篇
  1998年   7篇
  1997年   10篇
  1996年   12篇
  1995年   7篇
  1994年   10篇
  1993年   6篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1988年   3篇
  1987年   3篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1965年   1篇
排序方式: 共有1234条查询结果,搜索用时 296 毫秒
21.
Magnesium (Mg2+) deficiency is a frequently occurring disorder that leads to loss of bone mass, abnormal bone growth and skeletal weakness. It is not clear whether Mg2+ deficiency affects the formation and/or activity of osteoclasts. We evaluated the effect of Mg2+ restriction on these parameters. Bone marrow cells from long bone and jaw of mice were seeded on plastic and on bone in medium containing different concentrations of Mg2+ (0.8 mM which is 100% of the normal value, 0.4, 0.08 and 0 mM). The effect of Mg2+ deficiency was evaluated on osteoclast precursors for their viability after 3 days and proliferation rate after 3 and 6 days, as was mRNA expression of osteoclastogenesis-related genes and Mg2+-related genes. After 6 days of incubation, the number of tartrate resistant acid phosphatase-positive (TRACP+) multinucleated cells was determined, and the TRACP activity of the medium was measured. Osteoclastic activity was assessed at 8 days by resorption pit analysis. Mg2+ deficiency resulted in increased numbers of osteoclast-like cells, a phenomenon found for both types of marrow. Mg2+ deficiency had no effect on cell viability and proliferation. Increased osteoclastogenesis due to Mg2+ deficiency was reflected in higher expression of osteoclast-related genes. However, resorption per osteoclast and TRACP activity were lower in the absence of Mg2+. In conclusion, Mg2+ deficiency augmented osteoclastogenesis but appeared to inhibit the activity of these cells. Together, our in vitro data suggest that altered osteoclast numbers and activity may contribute to the skeletal phenotype as seen in Mg2+ deficient patients.  相似文献   
22.
Neisseria meningitidis (Nm) is a leading cause of septicemia in childhood. Nm septicemia is unique with respect to very quick disease progression, high in vivo bacterial replication rate and its considerable mortality. Nm circumvents major mechanisms of innate immunity such as complement system and phagocytosis. Neutrophil extracellular traps (NETs) are formed from neutrophils during systemic infection and are suggested to contain invading microorganisms. Here, we investigated the interaction of Nm with NETs. Both, meningococci and spontaneously released outer membrane vesicles (SOMVs) were potent NET inducers. NETs were unable to kill NET bound meningococci, but slowed down their proliferation rate. Using Nm as model organism we identified three novel mechanisms how bacteria can evade NET‐mediated killing: (i) modification of lipid A of meningococcal LPS with phosphoethanolamine protected Nm from NET‐bound cathepsin G; (ii) expression of the high‐affinity zinc uptake receptor ZnuD allowed Nm to escape NET‐mediated nutritional immunity; (iii) binding of SOMVs to NETs saved Nm from NET binding and the consequent bacteriostatic effect. Escape from NETs may contribute to the most rapid progression of meningococcal disease. The induction of NET formation by Nm in vivo might aggravate thrombosis in vessels ultimately directing to disseminated intravascular coagulation (DIC).  相似文献   
23.

Background

Cynomolgus macaques (Macaca fascicularis) represent a feasible model for research on Chagas disease since natural T. cruzi infection in these primates leads to clinical outcomes similar to those observed in humans. However, it is still unknown whether these clinical similarities are accompanied by equivalent immunological characteristics in the two species. We have performed a detailed immunophenotypic analysis of circulating leukocytes together with systems biology approaches from 15 cynomolgus macaques naturally infected with T. cruzi (CH) presenting the chronic phase of Chagas disease to identify biomarkers that might be useful for clinical investigations.

Methods and Findings

Our data established that CH displayed increased expression of CD32+ and CD56+ in monocytes and enhanced frequency of NK Granzyme A+ cells as compared to non-infected controls (NI). Moreover, higher expression of CD54 and HLA-DR by T-cells, especially within the CD8+ subset, was the hallmark of CH. A high level of expression of Granzyme A and Perforin underscored the enhanced cytotoxicity-linked pattern of CD8+ T-lymphocytes from CH. Increased frequency of B-cells with up-regulated expression of Fc-γRII was also observed in CH. Complex and imbricate biomarker networks demonstrated that CH showed a shift towards cross-talk among cells of the adaptive immune system. Systems biology analysis further established monocytes and NK-cell phenotypes and the T-cell activation status, along with the Granzyme A expression by CD8+ T-cells, as the most reliable biomarkers of potential use for clinical applications.

Conclusions

Altogether, these findings demonstrated that the similarities in phenotypic features of circulating leukocytes observed in cynomolgus macaques and humans infected with T. cruzi further supports the use of these monkeys in preclinical toxicology and pharmacology studies applied to development and testing of new drugs for Chagas disease.  相似文献   
24.
Plant‐based platforms are extensively used for the expression of recombinant proteins, including monoclonal antibodies. However, to harness the approach effectively and leverage it to its full potential, a better understanding of intracellular processes that affect protein properties is required. In this work, we examined vacuolar (vac) targeting and deposition of the monoclonal antibody (Ab) 14D9 in Nicotiana benthamiana leaves. Two distinct vacuolar targeting signals (KISIA and NIFRGF) were C‐terminal fused to the heavy chain of 14D9 (vac‐Abs) and compared with secreted and ER‐retained variants (sec‐Ab, ER‐Ab, respectively). Accumulation of ER‐ and vac‐Abs was 10‐ to 15‐fold higher than sec‐Ab. N‐glycan profiling revealed the predominant presence of plant typical complex fucosylated and xylosylated GnGnXF structures on sec‐Ab while vac‐Abs carried mainly oligomannosidic (Man 7‐9) next to GnGnXF forms. Paucimannosidic glycans (commonly assigned as typical vacuolar) were not detected. Confocal microscopy analysis using RFP fusions showed that sec‐Ab‐RFP localized in the apoplast while vac‐Abs‐RFP were exclusively detected in the central vacuole. The data suggest that vac‐Abs reached the vacuole by two different pathways: direct transport from the ER bypassing the Golgi (Ab molecules containing Man structures) and trafficking through the Golgi (for Ab molecules containing complex N‐glycans). Importantly, vac‐Abs were correctly assembled and functionally active. Collectively, we show that the central vacuole is an appropriate compartment for the efficient production of Abs with appropriate post‐translational modifications, but also point to a reconsideration of current concepts in plant glycan processing.  相似文献   
25.
26.
27.
Oleoylethanolamide (OEA) is a lipid mediator that inhibits food intake by activating the nuclear receptor peroxisome proliferator-activated receptor-alpha. In the rodent small intestine OEA levels decrease during food deprivation and increase upon refeeding, suggesting that endogenous OEA may participate in the regulation of satiety. Here we show that feeding stimulates OEA mobilization in the mucosal layer of rat duodenum and jejunum but not in the serosal layer from the same intestinal segments in other sections of the gastrointestinal tract (stomach, ileum, colon) or in a broad series of internal organs and tissues (e.g. liver, brain, heart, plasma). Feeding also increases the levels of other unsaturated fatty acid ethanolamides (FAEs) (e.g. linoleoylethanolamide) without affecting those of saturated FAEs (e.g. palmitoylethanolamide). Feeding-induced OEA mobilization is accompanied by enhanced accumulation of OEA-generating N-acylphosphatidylethanolamines (NAPEs) increased activity and expression of the OEA-synthesizing enzyme NAPE-phospholipase D, and decreased activity and expression of the OEAdegrading enzyme fatty acid amide hydrolase. Immunostaining studies revealed that NAPE-phospholipase D and fatty acid amide hydrolase are expressed in intestinal enterocytes and lamina propria cells. Collectively, these results indicate that nutrient availability controls OEA mobilization in the mucosa of the proximal intestine through a concerted regulation of OEA biosynthesis and degradation.  相似文献   
28.
Acute rheumatic fever is a serious autoimmune sequela of pharyngitis caused by certain group A streptococci. One mechanism applied by streptococcal strains capable of causing acute rheumatic fever is formation of an autoantigenic complex with human collagen IV. In some geographic regions with a high incidence of acute rheumatic fever pharyngeal carriage of group C and group G streptococci prevails. Examination of such strains revealed the presence of M-like surface proteins that bind human collagen. Using a peptide array and recombinant proteins with targeted amino acid substitutions, we could demonstrate that formation of collagen complexes during streptococcal infections depends on an octapeptide motif, which is present in collagen binding M and M-like proteins of different beta-hemolytic streptococcal species. Mice immunized with streptococcal proteins that contain the collagen binding octapeptide motif developed high serum titers of anti-collagen antibodies. In sera of rheumatic fever patients such a collagen autoimmune response was accompanied by specific reactivity against the collagen-binding proteins, linking the observed effect to clinical cases. Taken together, the data demonstrate that the identified octapeptide motif through its action on collagen plays a crucial role in the pathogenesis of rheumatic fever. Eradication of streptococci that express proteins with the collagen binding motif appears advisable for controlling rheumatic fever.  相似文献   
29.
Recent epidemiological data on diseases caused by beta-hemolytic streptococci belonging to Lancefield group C and G (GCS, GGS) underline that they are an emerging threat to human health. Among various virulence factors expressed by GCS and GGS isolates from human infections, M and M-like proteins are considered important because of their anti-phagocytic activity. In addition, protein G has been implicated in the accumulation of IgG on the bacterial surface through non-immune binding. The function of this interaction, however, is still unknown. Using isogenic mutants lacking protein G or the M-like protein FOG (group G streptococci), respectively, we could show that FOG contributes substantially to IgG binding. A detailed characterization of the interaction between IgG and FOG revealed its ability to bind the Fc region of human IgG and its binding to the subclasses IgG1, IgG2, and IgG4. FOG was also found to bind IgG of several animal species. Surface plasmon resonance measurements indicate a high affinity to human IgG with a dissociation constant of 2.4 pm. The binding site was localized in a central motif of FOG. It has long been speculated about anti-opsonic functions of streptococcal Fc-binding proteins. The presented data for the first time provide evidence and, furthermore, indicate functional differences between protein G and FOG. By obstructing the interaction between IgG and C1q, protein G prevented recognition by the classical pathway of the complement system. In contrast, IgG that was bound to FOG remained capable of binding C1q, an effect that may have important consequences in the pathogenesis of GGS infections.  相似文献   
30.
The hemolymph of ascidians (Chordata-Tunicata) contains different types of hemocytes embedded in a liquid plasma. In the present study, heparin and a sulfated heteropolysaccharide were purified from the hemolymph of the ascidian Styela plicata. The heteropolysaccharide occurs free in the plasma, is composed of glucose ( approximately 60%) and galactose ( approximately 40%), and is highly sulfated. Heparin, on the other hand, occurs in the hemocytes, and high performance liquid chromatography of the products formed by degradation with specific lyases revealed that it is composed mainly by the disaccharides DeltaUA(2SO(4))-1-->4-beta-d-GlcN(SO(4)) (39.7%) and DeltaUA(2SO(4))-1-->4-beta-d-GlcN(SO(4))(6SO(4)) (38.2%). Small amounts of the 3-O-sulfated disaccharides DeltaUA(2SO(4))-1-->4-beta-d-GlcN(SO(4))(3SO(4)) (9.8%) and DeltaUA(2SO(4))-1-->4-beta-d-GlcN(SO(4))(3SO(4))(6SO(4)) (3.8%) were also detected. These 3-O-sulfated disaccharides were demonstrated to be essential for the binding of the hemocyte heparin to antithrombin III. Electron microscopy techniques were used to characterize the ultrastructure of the hemocytes and to localize heparin and histamine in these cells. At least five cell types were recognized and classified as univacuolated and multivacuolated cells, amebocytes, hemoblasts, and granulocytes. Immunocytochemistry showed that heparin and histamine co-localize in intracellular granules of only one type of hemocyte, the granulocyte. These results show for the first time that in ascidians, a sulfated galactoglucan circulates free in the plasma, and heparin occurs as an intracellular product of a circulating basophil-like cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号