首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   6篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   8篇
  2013年   6篇
  2012年   12篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   8篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
排序方式: 共有83条查询结果,搜索用时 62 毫秒
81.
82.
Base excision repair is the major pathway for removal of oxidative DNA base damage. This pathway is initiated by DNA glycosylases, which recognize and excise damaged bases from DNA. In this work, we have purified the glycosylase domain (GD) of human DNA glycosylase NEIL3. The substrate specificity has been characterized and we have elucidated the catalytic mechanisms. GD NEIL3 excised the hydantoin lesions spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh) in single-stranded (ss) and double-stranded (ds) DNA efficiently. NEIL3 also removed 5-hydroxy-2′-deoxycytidine (5OHC) and 5-hydroxy-2′-deoxyuridine (5OHU) in ssDNA, but less efficiently than hydantoins. Unlike NEIL1 and NEIL2, which possess a β,δ-elimination activity, NEIL3 mainly incised damaged DNA by β-elimination. Further, the base excision and strand incision activities of NEIL3 exhibited a non-concerted action, indicating that NEIL3 mainly operate as a monofunctional DNA glycosylase. The site-specific NEIL3 mutant V2P, however, showed a concerted action, suggesting that the N-terminal amino group in Val2 is critical for the monofunctional modus. Finally, we demonstrated that residue Lys81 is essential for catalysis.  相似文献   
83.
Near infrared spectroscopy (NIR) is a promising technique for continuous blood glucose monitoring for diabetic patients. Four interferents, at physiological concentrations, were introduced to study how the glucose predictions varied with a standard multivariate calibration model. Lactate and ethanol were found to interfere strongly with the glucose predictions unless they were included in the calibration models. Lactate was mistaken for glucose and gave erroneously high glucose predictions, with a dose response of 0.46 mM/mM. The presence of ethanol resulted in too low glucose predictions, with a dose response of −0.43 mM/mM. Acetaminophen, a known interferent in the glucose monitoring devices used for diabetes management today, was not found to be an interferent in NIR spectroscopy, nor was caffeine. Thus, interferents that may appear in high concentrations, such as ethanol and lactate, must be included in the calibration or model building of future NIR-based glucose measurement devices for diabetes monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号