首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   4篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   4篇
  2019年   8篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   7篇
  2014年   6篇
  2013年   2篇
  2012年   18篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  1979年   1篇
排序方式: 共有90条查询结果,搜索用时 328 毫秒
61.
The aim of the project was to isolate and characterize bacteriocin-producing enterococci, as well as determine the prevalence of enterocin structural genes in 187 enterococcal clinical isolates from the northwest of Iran. The isolates were screened for antibacterial activity against 15 different indicator strains. The proteinaceous nature of the antimicrobial substances was confirmed by sensitivity to proteinase K; their stability to heat treatment was tested at 60 °C and 100 °C for 20 and 10 min, respectively. The PCR method was applied to detect previously identified enterocin genes. Our results showed that 38 (20.3%) of the enterococcal isolates were considered to be potential bacteriocinogenic strains. Furthermore, genes encoding diverse bacteriocin are highly distributed among clinical enterococci, and the strains with multi-bacteriocin genes displayed high antimicrobial activity. Enterocin A, enterolysin A, and enterocin L50A/B were the most abundant structural genes detected in bacteriocinogenic strains. This work is the first survey on the prevalence of bacteriocin genes among clinical enterococci in Iran that has isolated a strain with high antimicrobial activity and sensitivity to clinically relevant antibiotics.  相似文献   
62.
The sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) and its hydroxylated derivative N-glycolylneuraminic acid (Neu5Gc) differ by one oxygen atom. CMP-Neu5Gc is synthesized from CMP-Neu5Ac, with Neu5Gc representing a highly variable fraction of total Sias in various tissues and among different species. The exception may be the brain, where Neu5Ac is abundant and Neu5Gc is reported to be rare. Here, we confirm this unusual pattern and its evolutionary conservation in additional samples from various species, concluding that brain Neu5Gc expression has been maintained at extremely low levels over hundreds of millions of years of vertebrate evolution. Most explanations for this pattern do not require maintaining neural Neu5Gc at such low levels. We hypothesized that resistance of α2-8-linked Neu5Gc to vertebrate sialidases is the detrimental effect requiring the relative absence of Neu5Gc from brain. This linkage is prominent in polysialic acid (polySia), a molecule with critical roles in vertebrate neural development. We show that Neu5Gc is incorporated into neural polySia and does not cause in vitro toxicity. Synthetic polymers of Neu5Ac and Neu5Gc showed that mammalian and bacterial sialidases are much less able to hydrolyze α2-8-linked Neu5Gc at the nonreducing terminus. Notably, this difference was not seen with acid-catalyzed hydrolysis of polySias. Molecular dynamics modeling indicates that differences in the three-dimensional conformation of terminal saccharides may partly explain reduced enzymatic activity. In keeping with this, polymers of N-propionylneuraminic acid are sensitive to sialidases. Resistance of Neu5Gc-containing polySia to sialidases provides a potential explanation for the rarity of Neu5Gc in the vertebrate brain.  相似文献   
63.
A computational approach was proposed to study monomer–template interactions in a molecularly imprinted polymer (MIP) in order to gain insight at the molecular level into imprinting polymer selectivity, regarding complex formation between template and monomer at the pre-polymerisation step. This is the most important step in MIP preparation. In the present work, chlorphenamine (CPA), diphenhydramine (DHA) and methacrylic acid (MAA), were chosen as the template, non-template, and monomer, respectively. The attained complexes were optimised, and changes in the interaction energies, atomic charges, IR spectroscopy results, dipole moment, and polarisability were studied. The effects of solvent on template–monomer interactions were also investigated. According to a survey of the literature, this is the first work in which dipole moment and polarisability were used to predict the types of interactions existing in pre-polymerisation complexes. In addition, the density functional tight-binding (DFTB) method, an approximate version of the density functional theory (DFT) method that was extended to cover the London dispersion energy, was used to calculate the interaction energy.  相似文献   
64.
Ryanodine receptors (RyRs) are large homotetrameric protein complexes that mediate the release of intracellular stores of calcium. Mammals possess three gene copies, RyR1, RyR2, and RyR3 that are expressed in a variety of tissue types. Teleost fish express RyR1a and RyR1b genes that are expressed in slow twitch skeletal muscle and fast twitch skeletal muscles respectively. Here we report the results of a survey of the genome of bichir (Polypterus ornatipinnis), considered the most basal ray-finned fish, for its RyR genes. The bichir genome encodes four RyR genes, RyR1a, RyR1b, RyR2, and RyR3 that phylogenetically cluster with their vertebrate orthologs. Quantitative real time PCR shows fibre type-specific expression of the RyR1a and RyR1b genes. The RyR3 gene, however, is down regulated in bichir in contrast to derived teleosts including zebrafish in which the RyR1 and RyR3 genes are co-expressed at equivalent levels.  相似文献   
65.
Halogenated organic compounds, also termed organohalogens, were initially considered to be of almost exclusively anthropogenic origin. However, over 5000 naturally synthesized organohalogens are known today. This has also fuelled the hypothesis that the natural and ancient origin of organohalogens could have primed development of metabolic machineries for their degradation, especially in microorganisms. Among these, a special group of anaerobic microorganisms was discovered that could conserve energy by reducing organohalogens as terminal electron acceptor in a process termed organohalide respiration. Originally discovered in a quest for biodegradation of anthropogenic organohalogens, these organohalide‐respiring bacteria (OHRB) were soon found to reside in pristine environments, such as the deep subseafloor and Arctic tundra soil with limited/no connections to anthropogenic activities. As such, accumulating evidence suggests an important role of OHRB in local natural halogen cycles, presumably taking advantage of natural organohalogens. In this minireview, we integrate current knowledge regarding the natural origin and occurrence of industrially important organohalogens and the evolution and spread of OHRB, and describe potential implications for natural halogen and carbon cycles.  相似文献   
66.
The plant traits that drive ecosystems: Evidence from three continents   总被引:4,自引:0,他引:4  
Question: A set of easily‐measured (‘soft’) plant traits has been identified as potentially useful predictors of ecosystem functioning in previous studies. Here we aimed to discover whether the screening techniques remain operational in widely contrasted circumstances, to test for the existence of axes of variation in the particular sets of traits, and to test for their links with ‘harder’ traits of proven importance to ecosystem functioning. Location: central‐western Argentina, central England, northern upland Iran, and north‐eastern Spain. Recurrent patterns of ecological specialization: Through ordination of a matrix of 640 vascular plant taxa by 12 standardized traits, we detected similar patterns of specialization in the four floras. The first PCA axis was identified as an axis of resource capture, usage and release. PCA axis 2 appeared to be a size‐related axis. Individual PCA for each country showed that the same traits remained valuable as predictors of resource capture and utilization in all of them, despite their major differences in climate, biogeography and land‐use. The results were not significantly driven by particular taxa: the main traits determining PCA axis 1 were very similar in eudicotyledons and monocotyledons and Asteraceae, Fabaceae and Poaceae. Links between recurrent suites of ‘soft’ traits and ‘hard’ traits: The validity of PCA axis 1 as a key predictor of resource capture and utilization was tested by comparisons between this axis and values of more rigorously established predictors (‘hard’ traits) for the floras of Argentina and England. PCA axis 1 was correlated with variation in relative growth rate, leaf nitrogen content, and litter decomposition rate. It also coincided with palatability to model generalist herbivores. Therefore, location on PCA axis 1 can be linked to major ecosystem processes in those habitats where the plants are dominant. Conclusion: We confirm the existence at the global scale of a major axis of evolutionary specialization, previously recognised in several local floras. This axis reflects a fundamental trade‐off between rapid acquisition of resources and conservation of resources within well‐protected tissues. These major trends of specialization were maintained across different environmental situations (including differences in the proximate causes of low productivity, i.e. drought or mineral nutrient deficiency). The trends were also consistent across floras and major phylogenetic groups, and were linked with traits directly relevant to ecosystem processes.  相似文献   
67.
Heparan sulfate proteoglycans are essential for biological processes regulated by fibroblast growth factors (FGFs). Heparan sulfate (HS) regulates the activity of FGFs by acting as a coreceptor at the cell surface, enhancing FGF-FGFR affinity, and being a storage reservoir for FGFs in the extracellular matrix (ECM). Here we demonstrate a critical role for heparanase during mouse submandibular gland (SMG) branching morphogenesis. Heparanase, an endoglycosidase, colocalized with perlecan in the basement membrane and in epithelial clefts of SMGs. Inhibition of heparanase activity in organ culture decreased branching morphogenesis, and this inhibition was rescued specifically by FGF10 and not by other FGFs. By contrast, exogenous heparanase increased SMG branching and MAPK signaling and, surprisingly, when isolated epithelia were cultured in a three-dimensional ECM with FGF10, it increased the number of lateral branches and end buds. In a solid-phase binding assay, an FGF10-FGFR2b complex was released from the ECM by heparanase. In addition, surface plasmon resonance (SPR) analysis showed that FGF10 and the FGF10-FGFR2b complex bound to purified perlecan HS and could be released by heparanase. We used the FGF10-FGFR2b complex as a probe for HS in SMGs, and it colocalized with perlecan in the basement membrane and partly colocalized with syndecan 1 in the epithelium, and binding was reduced by treatment with heparanase. In summary, our results show heparanase releases FGF10 from perlecan HS in the basement membrane, increasing MAPK signaling, epithelial clefting, and lateral branch formation, which results in increased branching morphogenesis.  相似文献   
68.
Journal of Plant Growth Regulation - A common problem with vegetable production in saline areas is poor crop stand, but for black cumin (Nigella sativa L.) germination data are limited and...  相似文献   
69.

To investigate the effects of nanofertilizers and biofertilizers on the morpho-physiological and biochemical traits of safflower under full irrigation and water deficit stress, this study was carried out as a split-plot experiment based on a Randomized Complete Block Design with three replications at Urmia University in 2015. The main plot was full irrigation (control) and irrigation disruption at heading, flowering, and grain filling stages. Fertilizers, including control (without fertilizer), biofertilizer, water spray, foliar application of nanofertilizers, chemical fertilizers, and combined application of fertilizers, were assigned to the subplot. Plants under full irrigation and combined fertilizers had maximum height and chlorophyll a, whereas the lowest ones were obtained in irrigation disruption at the heading stage and control treatments. The maximum oil content (28.41%) was detected in irrigation disruption at the grain filling stage and nanofertilizer treatment, the lowest (21.96%) was obtained at irrigation disruption at the flowering stage and water spray treatment. The highest proline (397.21 µg g−1 fresh leaf) was found in irrigation disruption at the grain filling stage and water spray treatment, and the lowest (154.68 µg g−1 fresh leaf) was obtained at full irrigation and water spray treatment. Irrigation disruption at the heading stage and control treatments decreased carbohydrate content of fresh leaves by 86.54% compared to full irrigation and the combined fertilizers treatment. Irrigation disruption increases saturated fatty acids (palmitic and stearic acid) and decreases vitamin E and linoleic acid. The combined application of fertilizers significantly increased safflower oil quality. Overall, concerning the obtained highest oil percentage (28.41%), irrigation disruption during grain filling reduced water consumption and application of combined fertilizer via improving oil quality, so it is recommended to farmers.

  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号