首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   5篇
  2023年   4篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   11篇
  2018年   3篇
  2017年   5篇
  2016年   9篇
  2015年   5篇
  2014年   10篇
  2013年   12篇
  2012年   13篇
  2011年   9篇
  2010年   6篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  1999年   3篇
  1997年   1篇
  1982年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
121.

Background

Neuroblastoma Tumor (NT) is one of the most aggressive types of infant cancer. Essential to accurate diagnosis and prognosis is cellular quantitative analysis of the tumor. Counting enormous numbers of cells under an optical microscope is error-prone. There is therefore an urgent demand from pathologists for robust and automated cell counting systems. However, the main challenge in developing these systems is the inability of them to distinguish between overlapping cells and single cells, and to split the overlapping cells. We address this challenge in two stages by: 1) distinguishing overlapping cells from single cells using the morphological differences between them such as area, uniformity of diameters and cell concavity; and 2) splitting overlapping cells into single cells. We propose a novel approach by using the dominant concave regions of cells as markers to identify the overlap region. We then find the initial splitting points at the critical points of the concave regions by decomposing the concave regions into their components such as arcs, chords and edges, and the distance between the components is analyzed using the developed seed growing technique. Lastly, a shortest path determination approach is developed to determine the optimum splitting route between two candidate initial splitting points.

Results

We compare the cell counting results of our system with those of a pathologist as the ground-truth. We also compare the system with three state-of-the-art methods, and the results of statistical tests show a significant improvement in the performance of our system compared to state-of-the-art methods. The F-measure obtained by our system is 88.70%. To evaluate the generalizability of our algorithm, we apply it to images of follicular lymphoma, which has similar histological regions to NT. Of the algorithms tested, our algorithm obtains the highest F-measure of 92.79%.

Conclusion

We develop a novel overlapping cell splitting algorithm to enhance the cellular quantitative analysis of infant neuroblastoma. The performance of the proposed algorithm promises a reliable automated cell counting system for pathology laboratories. Moreover, the high performance obtained by our algorithm for images of follicular lymphoma demonstrates the generalization of the proposed algorithm for cancers with similar histological regions and histological structures.  相似文献   
122.
Zero mode waveguides (ZMWs), subwavelength optical nanostructures with dimensions ranging from 50 to 200 nm, have been used to study systems involving ligand-receptor interactions. We show that under proper conditions, lipid membranes will invaginate into the nanostructures, which confine optical excitation to subattoliter volumes. Fluorescence correlation spectroscopy (FCS) was used to characterize the diffusion of fluorescently tagged lipids in liquid-disordered phase 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and gel phase 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) membranes incubated on the nanostructured surface. In contrast to the POPC, DSPC membranes did not appear to enter the structures, suggesting that invagination is dependent on membrane rigidity. Although correlation curves obtained from POPC membranes conformed to previously derived models for diffusion in the evanescent field within the nanostructure, the diffusion constants obtained were systematically lower than expected. The validity of the one-dimensional diffusion model for membrane diffusion is discussed and it is concluded that the erroneous diffusion constants are a result of nontrivial membrane conformation within the ZMWs. Additionally, FCS was used to characterize the fraction of fluorescently labeled tetanus toxin C fragment bound to a ganglioside-populated POPC membrane within the ZMWs. This allowed the determination of the toxin's equilibrium binding constant at a concentration of 500 nM; higher than possible with diffraction-limited FCS. To our knowledge, the results presented here are the first reported for supported lipid bilayers in nanostructured devices. Furthermore, they open the possibility of studying membrane imbedded receptors and proteins at physiological concentrations with single-molecule resolution.  相似文献   
123.
124.
Male reproductive glands secrete signals into seminal fluid to facilitate reproductive success. In Drosophila melanogaster, these signals are generated by a variety of seminal peptides, many produced by the accessory glands (AGs). One epithelial cell type in the adult male AGs, the secondary cell (SC), grows selectively in response to bone morphogenetic protein (BMP) signaling. This signaling is involved in blocking the rapid remating of mated females, which contributes to the reproductive advantage of the first male to mate. In this paper, we show that SCs secrete exosomes, membrane-bound vesicles generated inside late endosomal multivesicular bodies (MVBs). After mating, exosomes fuse with sperm (as also seen in vitro for human prostate-derived exosomes and sperm) and interact with female reproductive tract epithelia. Exosome release was required to inhibit female remating behavior, suggesting that exosomes are downstream effectors of BMP signaling. Indeed, when BMP signaling was reduced in SCs, vesicles were still formed in MVBs but not secreted as exosomes. These results demonstrate a new function for the MVB–exosome pathway in the reproductive tract that appears to be conserved across evolution.  相似文献   
125.
In this study, a consanguineous family with progressive myoclonus epilepsy (PME) was clinically examined and molecularly investigated to determine the molecular events causing disease. Since exclusion of known genes indicated that novel genes causing PME still remained unidentified, homozygosity mapping, exome sequencing, as well as validation and disease-segregation analyses were subsequently carried out for both loci and gene identification. To further assure our results, a muscle biopsy and gene expression analyses were additionally performed. As a result, a homozygous, disease-segregating COL6A2 mutation, p.Asp215Asn, absent in a large number of control individuals, including control individuals of Iranian ancestry, was identified in both affected siblings. COL6A2 was shown to be expressed in the human cerebral cortex and muscle biopsy revealed no specific histochemical pathology. We conclude that the COL6A2 p.Asp215Asn mutation is likely to be responsible for PME in this family; however, additional studies are warranted to further establish the pathogenic role of both COL6A2 and the extracellular proteolysis system in the pathogenesis of PME.  相似文献   
126.
The intestinal oligopeptide transporter (cloned as Pept-1) hasmajor roles in protein nutrition and drug therapy. A key unstudied question is whether expression of Pept-1 is hormonally regulated. Inthis experiment, we investigated whether insulin has such a role. Weused a human intestinal cell monolayer (Caco-2) as the in vitro modelof human small intestine and glycylglutamine (Gly-Gln) as the modelsubstrate for Pept-1. Results showed that addition of insulin at aphysiological concentration (5 nM) to incubation medium greatlystimulates Gly-Gln uptake by Caco-2 cells. This stimulation was blockedwhen genistein, an inhibitor of tyrosine kinase, was added toincubation medium. Studies of the mechanism of insulin stimulationshowed the following. 1) Stimulationoccurred promptly (30-60 min) after exposure to insulin.2) There was no significant changein the Michaelis-Menten constant of Gly-Gln transport, but there was anearly twofold increase in its maximal velocity.3) Insulin effect persisted evenwhen Golgi apparatus, which is involved in trafficking of newlysynthesized Pept-1, was dismantled.4) However, there was completeelimination of insulin effect by disruption of microtubules involved intrafficking of preformed Pept-1. 5)Finally, with insulin treatment, there was no change in Pept-1 geneexpression, but the amount of Pept-1 protein in the apical membrane wasincreased. In conclusion, the results show that insulin, when it bindsto its receptor, stimulates Gly-Gln uptake by Caco-2 cells byincreasing the membrane population of Pept-1. The mechanism appears tobe increased translocation of this transporter from a preformedcytoplasmic pool.  相似文献   
127.
The aim of the present study was to analyse the dose rate effect of gamma radiation at the level of mutations, chromosomal aberrations, and cell growth in TK6 cells with normal as well as reduced levels of hMTH1 protein. TK6 cells were exposed to gamma radiation at dose rates ranging from 1.4 to 30.0 mGy/h (chronic exposure) as well as 24 Gy/h (acute exposure). Cell growth, frequency of thymidine kinase mutants, and of chromosomal aberrations in painted chromosomes 2, 8, and 14 were analysed. A decline in cell growth and an increase in unstable-type chromosomal aberrations with increasing dose rate were observed in both cell lines. A dose rate effect was not seen on mutations or stable-type chromosomal aberrations in any of the two cell lines. Reduction in the hMTH1 protein does not influence the sensitivity of TK6 cells to gamma radiation. This result fits well with data of others generated with the same cell line.  相似文献   
128.
129.
Gillnets are the primary fishing gear used in tropical multi-species fisheries along the Iranian southern coastal waters. Therefore, it is necessary to investigate the catch composition and performance of fishing gear for the possible negative effects on the stocks. Catch data and length frequency distribution (just for Kingfish, S. commerson) were examined for three kinds of drift gillnets: 1) small-meshed nets, 2) medium-meshed nets, and 3) nets with a single mesh size of 165 mm. This study was conducted in the northern part of the Persian Gulf from 2014 to 2015. Overall, 60 species of 32 families from four fish groups (i.e., Pelagic, Demersal, Benthopelagic, and Reef-associated) were recorded. Each net-type was used to target more than one species, with most species being considered as bycatch. Commercial fish species were caught the most, accounting for around 83% of the total catches. S. commerson is targeted by all kinds of nets, with medium-meshed nets being most efficient. The majority of S. commerson caught by the nets were immature. Overall, the total ban of gillnets with small mesh sizes is recommended to protect young S. commerson and prevent the possible risk of growth overfishing. Studies on gillnet selectivity are needed to set minimum mesh regulations for S. commerson and other commercial species if the potential impacts of gillnet are known.  相似文献   
130.
Treatment of stroke with bone marrow stromal cells (BMSC) significantly enhances brain remodeling and improves neurological function in non-diabetic stroke rats. Diabetes is a major risk factor for stroke and induces neurovascular changes which may impact stroke therapy. Thus, it is necessary to test our hypothesis that the treatment of stroke with BMSC has therapeutic efficacy in the most common form of diabetes, type 2 diabetes mellitus (T2DM). T2DM was induced in adult male Wistar rats by administration of a high fat diet in combination with a single intraperitoneal injection (35mg/kg) of streptozotocin. These rats were then subjected to 2h of middle cerebral artery occlusion (MCAo). T2DM rats received BMSC (5x106, n = 8) or an equal volume of phosphate-buffered saline (PBS) (n = 8) via tail-vein injection at 3 days after MCAo. MRI was performed one day and then weekly for 5 weeks post MCAo for all rats. Compared with vehicle treated control T2DM rats, BMSC treatment of stroke in T2DM rats significantly (p<0.05) decreased blood-brain barrier disruption starting at 1 week post stroke measured using contrast enhanced T1-weighted imaging with gadopentetate, and reduced cerebral hemorrhagic spots starting at 3 weeks post stroke measured using susceptibility weighted imaging, although BMSC treatment did not reduce the ischemic lesion volumes as demarcated by T2 maps. These MRI measurements were consistent with histological data. Thus, BMSC treatment of stroke in T2DM rats initiated at 3 days after stroke significantly reduced ischemic vascular damage, although BMSC treatment did not change infarction volume in T2DM rats, measured by MRI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号