首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   18篇
  2021年   4篇
  2020年   3篇
  2017年   6篇
  2016年   6篇
  2015年   5篇
  2014年   4篇
  2013年   3篇
  2012年   6篇
  2011年   9篇
  2010年   8篇
  2009年   12篇
  2008年   10篇
  2007年   9篇
  2006年   8篇
  2005年   11篇
  2004年   12篇
  2003年   11篇
  2002年   8篇
  2001年   6篇
  2000年   13篇
  1999年   15篇
  1998年   7篇
  1997年   9篇
  1996年   2篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   7篇
  1991年   8篇
  1990年   14篇
  1989年   4篇
  1988年   7篇
  1987年   1篇
  1986年   7篇
  1985年   5篇
  1984年   9篇
  1983年   3篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1979年   5篇
  1978年   3篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
  1966年   1篇
排序方式: 共有294条查询结果,搜索用时 309 毫秒
11.
The use of normal adult liver hepatocytes in cell culture for biochemical, toxicological and pharmacological studies has been greatly limited owing to the loss of replicative capacity and differentiated liver function. This is contrary to the ability of the liver to regenerate following injury in vivo. This suggests that liver stem or transitional hepatocytes exist that upon proper stimulus divide and differentiate into mature hepatocytes. In this study we report the establishment and culture of hepatocytes from normal human adult liver, which: (1) possess replicative capacity sufficient to subpassage 12–15 times (27–37 cumulative population doublings); (2) can be cryopreserved for subsequent use without loss of replica five capacity; and (3) upon differentiation in culture synthesize albumin and keratin 18 and metabolize benzo[a]pyrene. The ability of these cells to divide or express differentia tedfunctions appears to be due to a number of cellular, biochemical and physical characteristics that are present during the primary establishment and subsequent growth phases of the cell cultures. Disassociation of cells ffom excess liver tissue was best achieved by combining the mechanical action of the Stomacher@ with very low amounts of proteolytic enzymes and EGTA. The cell lines appeared to grow best when established and subpassaged in an rnALPHA medium supplemented with insulin, hydrocortisone, transferrin, epithelial growth factor and fetal bovine serum ® rescreened for human hepatocyte cell growth). The seeding density and cell-cell contact in culture appeared to be important for both cell division and expression of liver function. When cells were seeded at a low density and subpassaged before confluency, the cells continued to divide. Albumin and keratin 18 synthesis occurred primarily in tightly packed cell clusters. When cells were seeded at a high density, near confluency, albumin and keratin 18 synthesis occurred uniformly in all of the cells of the culture and the culture metabolized benzo[a]pyrene to water-soluble metabolites, which covalently bound to cellular DNA. This appearance of liver functions was consistent with the transition of hepatocytes to a terminally differentiated state. Nonhepatic markers, i.e., -fetoprotein, factor VIII and -glutamyl transpeptidase activity were not expressed in cells cultured at either low or high density. Thus, the data presented here indicate that normal human adult liver hepatocytes, once established in culture, can be subpassaged to a high number of population doublings, cryopreserved for later use, and modulated to express differentiated liver functions.bl]References  相似文献   
12.
The 70-kilodalton heat shock protein (hsp70) family of molecular chaperones, which contains both stress-inducible and normally abundant constitutive members, is highly conserved across distantly related taxa. Analysis of this protein family in individuals from an outbred population of tropical topminnows, Poeciliopsis gracilis, showed that while constitutive hsp70 family members showed no variation in protein isoforms, inducibly synthesized hsp70 was polymorphic. Several species of Poeciliopsis adapted to desert environments exhibited lower levels of inducible hsp70 polymorphism than the tropical species, but constitutive forms were identical to those in P. gracilis, as they were in the confamilial species Gambusia affinis. These differences suggest that inducible and constitutive members of this family are under different evolutionary constraints and may indicate differences in their function within the cell. Also, northern desert species of Poeciliopsis synthesize a subset of the inducible hsp70 isoforms seen in tropical species. This distribution supports the theory that ancestral tropical fish migrated northward and colonized desert streams; the subsequent decrease in variation of inducible hsp70 may have been due to genetic drift or a consequence of adaptation to the desert environment. Higher levels of variability were found when the 30- kilodalton heat shock protein (hsp30) family was analyzed within different strains of two desert species of Poeciliopsis and also in wild-caught individuals of Gambusia affinis. In both cases the distribution of hsp30 isoform diversity was similar to that seen previously with allozyme polymorphisms.   相似文献   
13.
Vital cell labeling techniques were used to trace the fate of the medial edge epithelial (MEE) cells during palatal fusion in vivo. Mouse palatal tissues were labeled in utero with DiI. The fetuses continued to develop in utero and tissues of the secondary palate were examined at several later stages of palatal ontogeny. The presence and distribution of DiI was correlated with the presence of cell phenotype-specific markers. During the initial stages of palatal fusion the DiI-labeled MEE were present in the midline position. These cells were attached to an intact laminin-containing basement membrane and contained keratin intermediate filaments. At later stages of palatogenesis the DiI-labeled MEE were not separated from the mesenchyme by an intact basement membrane and did not contain keratin. In late fetal development, DiI-labeled cells without an epithelial morphology were present in the mesenchyme. The transition of the DiI-labeled cells from an epithelial phenotype to a mesenchymal phenotype is consistent with a fate of epithelial-mesenchymal transformation rather than programmed cell death.  相似文献   
14.
Eight cell lines derived from the insects Spodoptera frugiperda, Trichoplusia ni, Mamestra brassicae, and Estigmene acrea were evaluated for recombinant beta-galactosidase and infectious virus production following infection with the baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV). Production was assessed on a specific (per cell and per microgram of uninfected cellular protein) and on a volumetric (per milliliter) basis. Cell density was found to be an important factor in comparing the cell lines due to a density-dependent inhibition of specific protein and virus production that appeared to result from cell-cell contact. After infection of cells at low-density specific beta-galactosidase production per cell would drop between 3- and 6-fold in five of the eight cell lines when plated on tissue culture plates at near-confluent and confluent cell densities. The cell lines Sf 21 and Sf 9 were least sensitive to cell density. After accounting for cell density effects and differences in cell size, two cell lines, BTI Tn 5B1-4 and BTI TnM, were identified that were superior to the other cell lines, including Sf 21 and Sf 9, in beta-galactosidase production. Optimal volumetric and specific beta-galactosidase production from Tn 5B1-4 and TnM cells was 2-fold and 5-fold higher, respectively, in both cell lines than the optimal production from Sf 9 or Sf 21 cells. The Tn 5B1-4 cell line also had the highest viability of all the cell lines at 3 days postinfection and could be adapted to serum-free media.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
15.
The chromophore of bacteriorhodopsin undergoes a transition from purple (570 nm absorbance maximum) to blue (605 nm absorbance maximum) at low pH or when the membrane is deionized. The blue form was stable down to pH 0 in sulfuric acid, while 1 M NaCl at pH 0 completely converted the pigment to a purple form absorbing maximally at 565 Other acids were not as effective as sulfuric in maintaining the blue form, and chloride was the best anion for converting blue membrane to purple membrane at low pH. The apparent dissociation constant for Cl- was 35 mM at pH 0, 0.7 M at pH 1 and 1.5 M at pH 2. The pH dependence of apparent Cl- binding could be modeled by assuming two different types of chromophore-linked Cl- binding site, one pH-dependent. Chemical modification of bacteriorhodopsin carboxyl groups (probably Asp-96, -102 and/or -104) by 1-ethyl-3-dimethlyaminopropyl carbodiimide, Lys-41 by dansyl chloride, or surface arginines by cyclohexanedione had no effect on the conversion of blue to purple membrane at pH 1. Fourier transform infrared difference spectroscopy of chloride purple membrane minus acid blue membrane showed the protonation of a carboxyl group (trough at 1392 cm -1 and peak at 1731 cm -1). The latter peak shifted to 1723 cm -1 in D2O. Ultraviolet difference spectroscopy of chloride purple membrane minus acid blue membrane showed ionization of a phenolic group (peak at 243 nm and evidence for a 295 nm peak superimposed on a tryptophan perturbation trough). This suggests the possibility of chloride-induced proton transfer from a tyrosine phenolic group to a carboxylate side-chain. We propose a mechanism for the purple to acid blue to chloride purple transition based on these results and the proton pump model of Braiman et al. (Biochemistry 27 (1988) 8516-8520).  相似文献   
16.
We have explored the possibilities that cell volume is regulated by the status of microtubule assembly and cyclic AMP metabolism and may be coordinated with shape change. Treatment of J774.2 mouse macrophages with colchicine caused rapid microtubule disassembly and was associated with a striking increase (from 15-20 to more than 90 percent) in the proportion of cells with a large protuberance at one pole. This provided a simple experimental system in which shape changes occurred in virtually an entire cell population in suspension. Parallel changes in cell volume could then be quantified by isotope dilution techniques. We found that the shape change caused by colchicine was accompanied by a decrease in cell volume of approximately 20 percent. Nocodozole, but not lumicolchicine, caused identical changes in both cell shape and cell volume. The volume loss was not due to cell lysis nor to inhibition of pinocytosis. The mechanism of volume loss was also examined. Colchicine induced a small but reproducible increase in activity of the ouabain-sensitive Na(+), K(+)-dependent ATPase. However, inhibition of this enzyme/transport system by ouabain did not change cell volume nor did it block the colchicines-induced decrease in volume. One the other hand, SITS (4’acetamido, 4-isothiocyano 2,2’ disulfonic acid stilbene), an inhibitor of anion transport, inhibited the effects of colchicines, thus suggesting a role for an anion transport system in cell volume regulation. Because colchicine is known to activate adenylate cyclase in several systems and because cell shape changes are often induced by hormones that elevate cyclic AMP, we also examined the effects of cyclic AMP on cell volume. Agents that act to increase syclic AMP (cholera toxin, which activates adenylate cyclase; IBMX, and inhibitor of phosphodiesterase; and dibutyryl cyclic AMP) all caused a volume decrease comparable to that of colchicine. To define the effective metabolic pathway, we studied two mutants of J774.2, one deficient in adenylate cyclase and the other exhibiting markedly reduced activity of cyclic AMP-dependent protein kinase. Cholera toxin did not produce a volume change in either mutant. Cyclic AMP produced a decrease in the cyclase-deficient line comparable to that in wild type, but did not cause a volume change in the kinase- deficient line. This analysis established separate roles for cyclic AMP and colchicine. The volume decrease induced by cyclic AMP requires the action of a cyclic AMP-dependent protein kinase. Colchicine, on the other hand, induced a comparable volume change in both mutants and wild type, and thus does not require the kinase.  相似文献   
17.
18.
The tomato Cf-4 and Cf-9 genes confer resistance to the leaf mould pathogen Cladosporium fulvum and map at a complex locus on the short arm of chromosome 1. It was previously shown that the gene encoding Cf-4, which recognizes the Avr4 avirulence determinant, is one of five tandemly duplicated homologous genes (Hcr9-4s) at this locus. Cf-4 was identified by molecular analysis of rare Cf-4/Cf-9 disease-sensitive recombinants and by complementation analysis. The analysis did not exclude the possibility that an additional gene(s) located distal to Cf-4 may also confer resistance to C. fulvum. We demonstrate that a number of Dissociation-tagged Cf-4 mutants, identified on the basis of their insensitivity to Avr4, are still resistant to infection by C. fulvum race 5. Molecular analysis of 16 Cf-4 mutants, most of which have small chromosomal deletions in this region, suggested the additional resistance specificity is encoded by Hcr9-4E. Hcr9-4E recognizes a novel C. fulvum avirulence determinant that we have designated Avr4E.  相似文献   
19.
Glycosylation is both cell line and protein dependent. Culture conditions can also influence the profile of glycoforms produced. To examine this possibility in the insect cell/baculovirus system, structures of N-linked oligosaccharides attached to SEAP (human secreted alkaline phosphatase), expressed under various culture conditions in BTI Tn5B1-4 cells, were characterized using FACE (fluorescence-assisted carbohydrate electrophoresis). Parameters varied were time of harvest, ammonia added during infection, dissolved oxygen, and temperature. It was found that glycosylation in the insect cell/baculovirus expression system is a robust, stable system that is less perturbed by variations in culture conditions than the level of protein expression. Addition of ammonia and low oxygen conditions affected SEAP expression, but not the oligosaccharide profile of SEAP. Time of SEAP harvest increased the amount of alpha-mannosidase resistant structures from 4.1% at 34 hours postinfection (h pi), to 5.0% at 100 h pi, and to 7.5% at 120 h pi. These structures were primarily sensitive to N-acetylhexosaminidase digest, although a small amount was insensitive to both mannosidase and N-acetyl-hexosaminidase digests. Lowering the temperature from 28 degrees C to 24 degrees C or even 20 degrees C, resulted in a twofold increase in oligosaccharides containing terminal alpha(1,3)-mannose residues. This condition did not affect the amount of mannosidase-resistant structures. However, this could result in more complete glycosylation of recombinant proteins in the BTI Tn5B1-4 cell line, because more structures with the potential for further processing would be produced.  相似文献   
20.
Trends in coral cover are widely used to indicate the health of coral reefs but are costly to obtain from field survey over large areas. In situ studies of reflected spectra at the coral surface show that living and recently dead colonies can be distinguished. Here, we investigate whether such spectral differences can be detected using an airborne remote sensing instrument. The Compact Airborne Spectrographic Imager (Itres Research Ltd, Canada) was flown in two configurations: 10 spectral bands with 1-m2 pixels and 6 spectral bands with 0.25-m2 pixels. First, we show that an instrument with 10 spectral bands possesses adequate spectral resolution to distinguish living Porites, living Pocillopora spp., partially dead Porites, recently dead Porites (total colony mortality within 6 months), old dead (>6 months) Porites, Halimeda spp., and coralline red algae when there is no water column to confuse spectra. All substrata were distinguished using fourth-order spectral derivatives around 538 nm and 562 nm. Then, at a shallow site (Tivaru) at Rangiroa Atoll, Tuamotu Archipelago (French Polynesia), we show that live and dead coral can be distinguished from the air to a depth of at least 4 m using first- and fourth-order spectral derivatives between 562–580 nm. However, partially dead and recently dead Porites colonies could not be distinguished from an airborne platform. Spectral differences among substrata are then exploited to predict the cover of reef substrata in ten 25-m2 plots at nearby Motu Nuhi (max depth 8 m). The actual cover in these plots was determined in situ using quadrats with a 0.01-m2 grid. Considerable disparity occurred between field and image-based measures of substrate cover within individual 25-m2 quadrats. At this small scale, disparity, measured as the absolute difference in cover between field and remote-sensing methods, reached 25% in some substrata but was always less than 10% for living coral (99% of which consisted of Porites spp.). At the scale of the reef (all ten 25-m2 quadrats), however, disparities in percent cover between imagery and field data were less than 10% for all substrata and extremely low for some classes (e.g. <3% for living Porites, recently dead Porites and Halimeda). The least accurately estimated substrata were sand and coralline red algae, which were overestimated by absolute values 7.9% and 6.6%, respectively. The precision of sampling was similar for field and remote-sensing methods: field methods required 19 plots to detect a 10% difference in coral cover among three reefs with a statistical power of 95%. Remote-sensing methods required 21 plots. However, it took 1 h to acquire imagery over 92,500 m2 of reef, which represents 3,700 plots of 25 m2 each, compared with 3 days to survey 10 such plots underwater. There were no significant differences in accuracy between 1-m2 and 0.25-m2 image resolutions, suggesting that the advantage of using smaller pixels is offset by reduced spectral information and an increase in noise (noise was observed to be 1.6–1.8 times greater in 0.25-m2 pixels). We show that airborne remote sensing can be used to monitor coral and algal cover over large areas, providing that water is shallow and clear, and that brown fleshy macroalgae are scarce, that depth is known independently (e.g. from sonar survey).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号