首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2806篇
  免费   244篇
  国内免费   10篇
  2021年   41篇
  2020年   23篇
  2019年   31篇
  2018年   45篇
  2017年   23篇
  2016年   51篇
  2015年   125篇
  2014年   127篇
  2013年   147篇
  2012年   196篇
  2011年   201篇
  2010年   112篇
  2009年   101篇
  2008年   143篇
  2007年   135篇
  2006年   155篇
  2005年   149篇
  2004年   140篇
  2003年   109篇
  2002年   81篇
  2001年   83篇
  2000年   82篇
  1999年   67篇
  1998年   32篇
  1997年   28篇
  1996年   22篇
  1995年   23篇
  1994年   22篇
  1993年   18篇
  1992年   58篇
  1991年   36篇
  1990年   38篇
  1989年   43篇
  1988年   29篇
  1987年   29篇
  1986年   31篇
  1985年   35篇
  1984年   20篇
  1983年   30篇
  1982年   13篇
  1981年   13篇
  1980年   9篇
  1979年   21篇
  1978年   10篇
  1977年   18篇
  1976年   12篇
  1975年   11篇
  1974年   10篇
  1972年   21篇
  1971年   16篇
排序方式: 共有3060条查询结果,搜索用时 19 毫秒
141.
142.
143.

We investigated the meiotic role of Srs2, a multi-functional DNA helicase/translocase that destabilises Rad51-DNA filaments and is thought to regulate strand invasion and prevent hyper-recombination during the mitotic cell cycle. We find that Srs2 activity is required for normal meiotic progression and spore viability. A significant fraction of srs2 mutant cells progress through both meiotic divisions without separating the bulk of their chromatin, although in such cells sister centromeres often separate. Undivided nuclei contain aggregates of Rad51 colocalised with the ssDNA-binding protein RPA, suggesting the presence of persistent single-strand DNA. Rad51 aggregate formation requires Spo11-induced DSBs, Rad51 strand-invasion activity and progression past the pachytene stage of meiosis, but not the DSB end-resection or the bias towards interhomologue strand invasion characteristic of normal meiosis. srs2 mutants also display altered meiotic recombination intermediate metabolism, revealed by defects in the formation of stable joint molecules. We suggest that Srs2, by limiting Rad51 accumulation on DNA, prevents the formation of aberrant recombination intermediates that otherwise would persist and interfere with normal chromosome segregation and nuclear division.

  相似文献   
144.
Knowledge of protein subcellular localization is vitally important for both basic research and drug development. With the avalanche of protein sequences emerging in the post-genomic age, it is highly desired to develop computational tools for timely and effectively identifying their subcellular localization purely based on the sequence information alone. Recently, a predictor called “pLoc-mGpos” was developed for identifying the subcellular localization of Gram-positive bacterial proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems in which some proteins, called “multiplex proteins”, may simultaneously occur in two or more subcellular locations. Although it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mGpos was trained by an extremely skewed dataset in which some subset (subcellular location) was over 11 times the size of the other subsets. Accordingly, it cannot avoid the bias consequence caused by such an uneven training dataset. To alleviate such bias consequence, we have developed a new and bias-reducing predictor called pLoc_bal-mGpos by quasi-balancing the training dataset. Rigorous target jackknife tests on exactly the same experiment-confirmed dataset have indicated that the proposed new predictor is remarkably superior to pLoc-mGpos, the existing state-of-the-art predictor in identifying the subcellular localization of Gram-positive bacterial proteins. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_bal-mGpos/, by which users can easily get their desired results without the need to go through the detailed mathematics.  相似文献   
145.
Chou JH  Bargmann CI  Sengupta P 《Genetics》2001,157(1):211-224
Caenorhabditis elegans odr-2 mutants are defective in the ability to chemotax to odorants that are recognized by the two AWC olfactory neurons. Like many other olfactory mutants, they retain responses to high concentrations of AWC-sensed odors; we show here that these residual responses are caused by the ability of other olfactory neurons (the AWA neurons) to be recruited at high odor concentrations. odr-2 encodes a membrane-associated protein related to the Ly-6 superfamily of GPI-linked signaling proteins and is the founding member of a C. elegans gene family with at least seven other members. Alternative splicing of odr-2 yields three predicted proteins that differ only at the extreme amino terminus. The three isoforms have different promoters, and one isoform may have a unique role in olfaction. An epitope-tagged ODR-2 protein is expressed at high levels in sensory neurons, motor neurons, and interneurons and is enriched in axons. The AWC neurons are superficially normal in their development and structure in odr-2 mutants, but their function is impaired. Our results suggest that ODR-2 may regulate AWC signaling within the neuronal network required for chemotaxis.  相似文献   
146.
We found that commercially available sialidases prepared from Clostridium perfringens ATCC10543 were contaminated with an endoglycosidase capable of releasing the disaccharide GlcNAcalpha1-->4Gal from glycans expressed in the gastric gland mucous cell-type mucin. We have isolated this enzyme in electrophoretically homogeneous form from the culture supernatant of this organism by ammonium sulfate precipitation followed by affinity chromatography using a Sephacryl S-200 HR column. The enzyme was specifically retained by and eluted from the column with methyl-alpha-Glc. By NMR spectroscopy, the structure of the disaccharide released from porcine gastric mucin by this enzyme was established to be GlcNAcalpha1-->4Gal. The specificity of this enzyme as an endo-beta-galactosidase was established by analyzing the liberation of GlcNAcalpha1-->4Gal from GlcNAcalpha1-->4Galbeta1-->4GlcNAcbeta1-->6(GlcNAcalpha1--> 4Galbeta1-->3)GalNAc-ol by mass spectrometry. Because this novel endo-beta-galactosidase specifically releases the GlcNAcalpha1-->4Gal moiety from porcine gastric mucin, we propose to call this enzyme a GlcNAcalpha1-->4Gal-releasing endo-beta-galactosidase (Endo-beta-Gal(GnGa)). Endo-beta-Gal(GnGa) was found to remove the GlcNAcalpha1-->4Gal epitope expressed in gastric adenocarcinoma AGS cells transfected with alpha1,4-N-acetylglucosaminyltransferase cDNA. Endo-beta-Gal(GnGa) should become useful for studying the structure and function of glycoconjugates containing the terminal GlcNAcalpha1-->4Gal epitope.  相似文献   
147.
148.
A series of DNA heptadecamers containing the DNA analogues of RNA E-like 5'-d(GXA)/(AYG)-5' motifs (X/Y is complementary T/A, A/T, C/G, or G/C pair) were studied using nuclear magnetic resonance (NMR) methodology and distance geometry (DG)/molecular dynamics (MD) approaches. Such oligomers reveal excellent resolution in NMR spectra and exhibit many unusual nuclear Overhauser effects (NOEs) that allow for good characterization of an unusual zipper-like conformation with zipper-like Watson-Crick base-pairs; the potential canonical X.Y H-bonding is not present, and the central X/Y pairs are transformed instead into inter-strand stacks that are bracketed by sheared G.A base-pairs. Such phenomenal structural change is brought about mainly through two backbone torsional angle adjustments, i.e. delta from C2'-endo to C3'-endo for the sugar puckers of unpaired residues and gamma from gauche(+) to trans for the following 3'-adenosine residues. Such motifs are analogous to the previously studied (GGA)(2) motif presumably present in the human centromeric (TGGAA)(n) tandem repeat sequence. The novel zipper-like motifs are only 4-7 deg. C less stable than the (GGA)(2) motif, suggesting that inter-strand base stacking plays an important role in stabilizing unusual nucleic acid structures. The discovery that canonical Watson-Crick G.C or A.T hydrogen-bonded pairs can be transformed into stacking pairs greatly increases the repertoire for unusual nucleic acid structural motifs.  相似文献   
149.
A series of DNA 21-mers containing a variety of the 4 x 4 internal loop sequence 5'-CAAG-3'/3'-ACGT-5' were studied using nuclear magnetic resonance (NMR) methodology and distance geometry (DG)/molecular dynamics (MD) approaches. Such oligomers exhibit excellent resolution in the NMR spectra and reveal many unusual NOEs (nuclear Overhauser effect) that allow for the detailed characterization of a DNA hairpin incorporating a track of four different non-Watson-Crick base-pairs in the stem. These include a wobble C.A base-pair, a sheared A.C base-pair, a sheared A.G base-pair, and a wobble G.T base-pair. Significantly different twisting angles were observed between the base-pairs in internal loop that results with excellent intra-strand and inter-strand base stacking within the four consecutive mismatches and the surrounding canonical base-pairs. This explains why it melts at 52 degrees C even though five out of ten base-pairs in the stem adopt non-Watson-Crick pairs. However, the 4 x 4 internal loop still fits into a B-DNA double helix very well without significant change in the backbone torsion angles; only zeta torsion angles between the tandem sheared base-pairs are changed to a great extent from the gauche(-) domain to the trans domain to accommodate the cross-strand base stacking in the internal loop. The observation that several consecutive non-canonical base-pairs can stably co-exist with Watson-Crick base-pairs greatly increases the limited repertoire of irregular DNA folds and reveals the possibility for unusual structural formation in the functionally important genomic regions that have potential to become single-stranded.  相似文献   
150.
The biological activity of retinoic acid (RA) was examined in human hepatoma Hep3B cells. Under serum-deprived conditions, RA induced S/M-phase elevation and mitotic index increase within 24 h, followed by apoptosis. This RA-induced apoptosis was accompanied by p53-independent up-regulation of endogenous p21(CIPI/Waf1) and Bax proteins, as well as activation of p34(cdc2) kinase, and increase of Rb2 protein level and phosphorylation pattern. In addition, RA had no effect on the levels of Bcl-XL; Bcl-XS; cyclins A, B, D1, D3, or E; or Rb1 expression but markedly down-modulated Cdk2 kinase activity and reduced Cdk4 expression. RA also slightly delayed p27(Kip1) expression. Olomoucine, a potent p34(cdc2) and Cdk2 inhibitor, effectively blocked RA-mediated p34(cdc2) kinase activation and prevented RA-induced apoptosis. Furthermore, antisense oligonucleotide complementary to p21(CIP2/Waf1) and p34(cdc2) mRNA significantly rescued RA-induced apoptosis. Our data indicate that p21(CIP2/Waf1) overexpression may not be the only regulatory factor necessary for RA-induced apoptosis in human hepatoma Hep3B cells. RA treatment leads to Rb2 hyperphosphorylation, and p34(cdc2) kinase activation is coincident with an aberrant mitotic progression, followed by appearance of abnormal nucleus. This aberrant cell cycle progression appeared requisite for RA-induced cell death. These findings suggest that inappropriate regulation of the cell cycle regulators p21(CIP2/Waf1) and p34(cdc2) is coupled with induction of Bax and involved in cell death with apoptosis when Hep3B cells are exposed to RA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号