首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   14篇
  2023年   6篇
  2022年   7篇
  2021年   17篇
  2020年   10篇
  2019年   26篇
  2018年   12篇
  2017年   14篇
  2016年   18篇
  2015年   22篇
  2014年   17篇
  2013年   32篇
  2012年   20篇
  2011年   29篇
  2010年   16篇
  2009年   16篇
  2008年   5篇
  2007年   10篇
  2006年   10篇
  2005年   8篇
  2004年   8篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1992年   1篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1968年   1篇
排序方式: 共有316条查询结果,搜索用时 218 毫秒
51.
Effects of exogenous gibberellic acid (GA; 10 and 100 μM) application on growth, protein and nitrogen contents, ammonium (NH4 +) content, enzymes of nitrogen assimilation and antioxidant system in pea seedlings were investigated under chromium (VI) phytotoxicity (Cr VI; 50, 100 and 250 μM). Exposure of pea seedlings to Cr and 100 μM GA resulted in decreased seed germination, fresh and dry weight and length of root and shoot, and protein and nitrogen contents compared to control. Compared to control, Cr and 100 μM GA led to the significant alteration in nitrogen assimilation in pea. These treatments decreased root and shoot nitrate reductase (NR), glutamine synthetase (GS) and glutamine 2-oxoglutarate aminotransferase (GOGAT) activities (except 50 μM Cr alone for GOGAT) while glutamate dehydrogenase (GDH) activity and NH4 + content increased. Compared to control, the root and shoot activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased (except APX activity at 250 μM Cr + 100 μM GA) while catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase (DHAR) activities were decreased (except GR at 100 μM GA alone) following exposure of Cr and 100 μM GA. Total ascorbate and total glutathione in root and shoot decreased by the treatments of Cr and 100 μM GA while their levels were increased by the application of 10 μM GA compared to Cr treatments alone. It has been reported that application of 10 μM GA together with Cr alleviated inhibited levels of growth, nitrogen assimilation and antioxidant system compared to Cr treatments alone. This study showed that application of 10 μM GA counteracts some of the adverse effects of Cr phytotoxicity with the increased levels of antioxidants and sustained activities of enzymes of nitrogen assimilation; however, 100 μM GA showed apparently reverse effect under Cr phytotoxicity.  相似文献   
52.
CD4 T cells play a cardinal role in orchestrating immune system. Differentiation of CD4 T cells to Th1 and Th2 effector subsets depends on multiple factors such as relative intensity of interactions between T cell receptor with peptide-major histocompatibility complex, cytokine milieu, antigen dose, and costimulatory molecules. Literature supports the critical role of peptide’s binding affinity to Human Leukocyte Antigens (HLAs) and in the differentiation of naïve CD4 T cells to Th1 and Th2 subsets. However, there exists no definite report addressing very precisely the correlation between physicochemical properties (hydrophobicity, hydrophilicity), pattern, position of amino acids in peptide and their role in skewing immune response towards Th1 and Th2 cells. This may play a significant role in designing peptide vaccines. Hence in the present study, we have evaluated the relationship between amino acid pattern and their influence in differentiation of Th1 and Th2 cells. We have used a data set of 320 peptides, whose role has been already established experimentally in the generation of either Th1 or Th2 immune response. Further, characterization was done based on binding affinity, promiscuity, amino acid pattern and binding conformation of peptides. We have observed that distinct amino acids in peptides elicit either Th1 or Th2 immunity. Consequently, this study signifies that alteration in the sequence and type of selected amino acids in the HLA class II binding peptides can modulate the differentiation of Th1 and Th2 cells. Therefore, this study may have an important implication in providing a platform for designing peptide-based vaccine candidates that can trigger desired Th1 or Th2 response.  相似文献   
53.
RelMtb, a GTP pyrophosphokinase encoded by the Mycobacterium tuberculosis (Mtb) genome, catalyzes synthesis of (p)ppGpp from ATP and GDP(GTP) and its hydrolysis to GDP(GTP) and pyrophosphate to mediate stringent response, which helps bacteria to survive during nutrient limitation. Like other members of Rel_Spo homologs, RelMtb has four distinct domains: HD, Rel_Spo (RSD), TGS and ACT. The N-terminal HD and RSD are responsible for (p)ppGpp hydrolysis and synthesis, respectively. In this study, we have dissected the rel Mtb gene function and determined the minimal region essential for (p)ppGpp synthetic activity. The RelMtb and its truncated derivatives were expressed from an arabinose inducible promoter (P BAD ), and in vivo functional analyses were done in a (p)ppGpp null Escherichia coli strain. Our results indicate that only 243 amino acids (188–430 residues) containing fragment are sufficient for RelMtb (p)ppGpp synthetic activity. The results were further confirmed by in vitro assays using purified proteins. We further characterized the RSD of RelMtb by substituting several conserved amino acids with structurally related residues and identified six such residues, which appeared to be critical for maintaining its catalytic activity. Furthermore, we have also extended our analysis to an RSD encoding gene rv1366 of Mtb, and experimental results indicated that the encoded protein Rv1366 is unable to synthesize (p)ppGpp.  相似文献   
54.
Delineating the kinetic and thermodynamic factors which contribute to the stability of transmembrane β-barrels is critical to gain an in-depth understanding of membrane protein behavior. Human mitochondrial voltage-dependent anion channel isoform 2 (hVDAC-2), one of the key anti-apoptotic eukaryotic β-barrel proteins, is of paramount importance, owing to its indispensable role in cell survival. We demonstrate here that the stability of hVDAC-2 bears a strong kinetic contribution that is dependent on the absolute micellar concentration used for barrel folding. The refolding efficiency and ensuing stability is sensitive to the lipid-to-protein (LPR) ratio, and displays a non-linear relationship, with both low and high micellar amounts being detrimental to hVDAC-2 structure. Unfolding and aggregation process are sequential events and show strong temperature dependence. We demonstrate that an optimal lipid-to-protein ratio of 2600∶1 – 13000∶1 offers the highest protection against thermal denaturation. Activation energies derived only for lower LPRs are ∼17 kcal mol−1 for full-length hVDAC-2 and ∼23 kcal mol−1 for the Cys-less mutant, suggesting that the nine cysteine residues of hVDAC-2 impart additional malleability to the barrel scaffold. Our studies reveal that cysteine residues play a key role in the kinetic stability of the protein, determine barrel rigidity and thereby give rise to strong micellar association of hVDAC-2. Non-linearity of the Arrhenius plot at high LPRs coupled with observation of protein aggregation upon thermal denaturation indicates that contributions from both kinetic and thermodynamic components stabilize the 19-stranded β-barrel. Lipid-protein interaction and the linked kinetic contribution to free energy of the folded protein are together expected to play a key role in hVDAC-2 recycling and the functional switch at the onset of apoptosis.  相似文献   
55.
56.
57.
The nitrogen, sulfur and carbon cycles all rely on critical microbial transformations that are carried out by enzymes that require molybdenum (Mo) as a cofactor. Despite Mo importance in these biogeochemical cycles, little information exists about microbial Mo utilization in extreme environments where, due to geochemical conditions, bioavailable Mo may be limited. Using metagenomic data from nine hot springs in Tengchong, Yunnan Province, China, which range in temperature from 42°C to 96°C and pH from 2.3 to 9, the effects of pH, temperature and spring geochemistry on the abundance and taxonomic affiliation of genes related to Mo were studied. Dissolved Mo was only detected at sites with circumneutral pH. However, processes and organisms that require Mo were detected at all sites across all temperature and pH gradients. All sites contained xanthine dehydrogenase, formate dehydrogenase, carbon‐monoxide dehydrogenase, nitrate reductase, sulfite oxidase and methionine‐sulfoxide reductase despite different community compositions. This suggests that different microbial communities, resulting from different physicochemical conditions, may be performing similar metabolic functions. Furthermore, the abundance and taxonomic diversity of Mo‐related annotations increased with higher concentrations of Mo. This study shows that despite geochemical conditions that can limit Mo bioavailability, microbes require Mo for a variety of processes.  相似文献   
58.
Monopolar spindle 1 (Mps1, also known as TTK) is a protein kinase crucial for ensuring that cell division progresses to anaphase only after all chromosomes are connected to spindle microtubules. Incomplete chromosomal attachment leads to abnormal chromosome counts in the daughter cells (aneuploidy), a condition common in many solid cancers. Therefore Mps1 is an established target in cancer therapy. Mps1 kinase inhibitors include reversine (2‐(4‐morpholinoanilino)‐6‐cyclohexylaminopurine), a promiscuous compound first recognized as an inhibitor of the Aurora B mitotic kinase. Here, we present the 3.0‐Å resolution crystal structure of the Mps1 kinase domain bound to reversine. Structural comparison of reversine bound to Mps1 and Aurora B, indicates a similar binding pose for the purine moiety of reversine making three conserved hydrogen bonds to the protein main chain, explaining the observed promiscuity of this inhibitor. The cyclohexyl and morpholinoaniline moieties of reversine however, have more extensive contacts with the protein in Mps1 than in Aurora B. This is reflected both in structure‐based docking energy calculations, and in new experimental data we present here, that both confirm that the affinity of reversine towards Mps1 is about two orders of magnitude higher than towards Aurora B. Thus, our data provides detailed structural understanding of the existing literature that argues reversine inhibits Mps1 more efficiently than Aurora B based on biochemical and in‐cell assays. Proteins 2016; 84:1761–1766. © 2016 Wiley Periodicals, Inc.  相似文献   
59.
60.
Ointments are generally prepared either by fusion or by levigation methods. The current study proposes the use of hot-melt extrusion (HME) processing for the preparation of a polyethylene glycol base ointment. Lidocaine was used as a model drug. A modified screw design was used in this process, and parameters such as feeding rate, barrel temperature, and screw speed were optimized to obtain a uniform product. The product characteristics were compared with an ointment of similar composition prepared by conventional fusion method. The rheological properties, drug release profile, and texture characteristics of the hot-melt extruded product were similar to the conventionally prepared product. This study demonstrates a novel application of the hot-melt extrusion process in the manufacturing of topical semi-solids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号