首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   33篇
  2021年   3篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2016年   7篇
  2015年   8篇
  2014年   10篇
  2013年   15篇
  2012年   20篇
  2011年   26篇
  2010年   10篇
  2009年   10篇
  2008年   27篇
  2007年   21篇
  2006年   16篇
  2005年   21篇
  2004年   25篇
  2003年   13篇
  2002年   18篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   13篇
  1997年   6篇
  1995年   3篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1970年   1篇
  1966年   1篇
排序方式: 共有329条查询结果,搜索用时 31 毫秒
71.
72.
ZO-1, ZO-2, and ZO-3 are closely related MAGUK family proteins that localize at the cytoplasmic surface of tight junctions (TJs). ZO-1 and ZO-2 are expressed in both epithelia and endothelia, whereas ZO-3 is exclusively expressed in epithelia. In spite of intensive studies of these TJ MAGUKs, our knowledge of their functions in vivo, especially those of ZO-3, is still fragmentary. Here, we have generated mice, as well as F9 teratocarcinoma cell lines, that do not express ZO-3 by homologous recombination. Unexpectedly, ZO-3(-/-) mice were viable and fertile, and rigorous phenotypic analyses identified no significant abnormalities. Moreover, ZO-3-deficient F9 teratocarcinoma cells differentiated normally into visceral endoderm epithelium-like cells in the presence of retinoic acid. These cells had a normal epithelial appearance, and the molecular architecture of their TJs did not appear to be affected, except that TJ localization of ZO-2 was upregulated. Suppression of ZO-2 expression by RNA interference in ZO-3(-/-) cells, however, did not affect the architecture of TJs. Furthermore, the speed with which TJs formed after a Ca(2+) switch was indistinguishable between wild-type and ZO-3(-/-) cells. These findings indicate that ZO-3 is dispensable in vivo in terms of individual viability, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment.  相似文献   
73.
Tropomyosin is a well-characterized regulator of muscle contraction. It also stabilizes actin filaments in a variety of muscle and non-muscle cells. Although these two functions of tropomyosin could have different impacts on actin cytoskeletal organization, their functional relationship has not been studied in the same experimental system. Here, we investigated how tropomyosin stabilizes actin filaments and how this function is influenced by muscle contraction in Caenorhabditis elegans body wall muscle. We confirmed the antagonistic role of tropomyosin against UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament organization using multiple UNC-60B mutant alleles. Tropomyosin was also antagonistic to UNC-78 (AIP1) in vivo and protected actin filaments from disassembly by UNC-60B and UNC-78 in vitro, suggesting that tropomyosin protects actin filaments from the ADF/cofilin-AIP1 actin disassembly system in muscle cells. A mutation in the myosin heavy chain caused greater reduction in contractility than tropomyosin depletion. However, the myosin mutation showed much weaker suppression of the phenotypes of ADF/cofilin or AIP1 mutants than tropomyosin depletion. These results suggest that muscle contraction has only minor influence on the tropomyosin's protective role against ADF/cofilin and AIP1, and that the two functions of tropomyosin in actin stability and muscle contraction are independent of each other.  相似文献   
74.
The epithelial barrier is fundamental to the physiology of most metazoan organ systems. Occluding junctions, including vertebrate tight junctions and invertebrate septate junctions, contribute to the epithelial barrier function by restricting free diffusion of solutes through the paracellular route. The recent identification and characterization of claudins, which are tight junction-associated adhesion molecules, gives insight into the molecular architecture of tight junctions and their barrier-forming mechanism in vertebrates. Mice lacking the expression of various claudins, and human hereditary diseases with claudin mutations, have revealed that the claudin-based barrier function of tight junctions is indispensable in vivo. Interestingly, claudin-like molecules have recently been identified in septate junctions of Drosophila. Here, we present an overview of recent progress in claudin studies conducted in mammals and flies.  相似文献   
75.
Eukaryotic mRNAs possess a 5′-terminal cap structure (cap), m7GpppN, which facilitates ribosome binding. The cap is bound by eukaryotic translation initiation factor 4F (eIF4F), which is composed of eIF4E, eIF4G, and eIF4A. eIF4E is the cap-binding subunit, eIF4A is an RNA helicase, and eIF4G is a scaffolding protein that bridges between the mRNA and ribosome. eIF4G contains an RNA-binding domain, which was suggested to stimulate eIF4E interaction with the cap in mammals. In Saccharomyces cerevisiae, however, such an effect was not observed. Here, we used recombinant proteins to reconstitute the cap binding of the mammalian eIF4E-eIF4GI complex to investigate the importance of the RNA-binding region of eIF4GI for cap interaction with eIF4E. We demonstrate that chemical cross-linking of eIF4E to the cap structure is dramatically enhanced by eIF4GI fragments possessing RNA-binding activity. Furthermore, the fusion of RNA recognition motif 1 (RRM1) of the La autoantigen to the N terminus of eIF4GI confers enhanced association between the cap structure and eIF4E. These results demonstrate that eIF4GI serves to anchor eIF4E to the mRNA and enhance its interaction with the cap structure.The cap structure, m7GpppN, is present at the 5′ terminus of all nuclear transcribed eukaryotic mRNAs. Cap-dependent binding of the ribosome to mRNA is mediated by the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E), which forms a complex termed eIF4F together with eIF4G and eIF4A. Mammalian eIF4G, which has two isoforms, eIF4GI and eIF4GII, is a modular, multifunctional protein that binds to poly(A)-binding protein (PABP) (14) and eIF4E (18, 20) via the N-terminal third region. Mammalian eIF4G binds to eIF4A and eIF3 (15) via the middle third region and to eIF4A and Mnk protein kinase at the C-terminal region. eIF4GI also possesses an RNA-binding sequence (2, 9, 33) in the middle region. There are two RNA-binding sites on eIF4GI; one is located amino terminal to the first HEAT domain, and the other is located within the first HEAT domain (23). Mammalian and Saccharomyces cerevisiae eIF4E are similar in size (24 kDa), but mammalian eIF4GI (220 kDa) is larger than its yeast counterpart (150 kDa), as the latter lacks a C-terminal domain corresponding to mammalian eIF4GI (38).The affinity of eIF4E for the cap structure has been a matter of dispute for some time. The earlier works of Carberry et al. (4) and Ueda et al. (39) estimated the equilibrium dissociation constant (Kd) of the eIF4E-cap complex by fluorescence titration to be 2 × 10−6 to 5 × 10−6 M depending on the nature of the cap analog. Later on, development of a new methodology for the fluorescence titration experiments yielded Kd values of 10−7 to 10−8 (29, 41). The source of the difference with the previous reports was thoroughly analyzed (29, 30). The interaction between the cap structure and eIF4E is dramatically enhanced by eIF4GI. This was first reported by showing that cross-linking of mammalian eIF4E to the cap structure is more efficient when it is a subunit of the eIF4F complex (19) or when it is complexed to eIF4GI (11). A similar enhancement of the binding of eIF4E to the cap structure was observed in yeast (40). However, two very different mechanisms were proposed to explain these observations. For the mammalian system, it was postulated that the middle segment of eIF4GI, which binds RNA, stabilizes the eIF4E interaction with the cap structure (11). This model was based primarily on the finding that in poliovirus-infected cells, eIF4GI is cleaved between its N-terminal third and the middle third, and consequently, eIF4E remains attached to the N-terminal eIF4GI fragment lacking the RNA-binding region. Under these conditions, cross-linking of eIF4E to the cap structure was poor (19, 31). In contrast, in yeast, a strong interaction between the cap structure and eIF4E was achieved using an eIF4G fragment containing the eIF4E-binding site that lacks the RNA-binding region (34, 40). Also, the yeast eIF4G fragment from amino acids 393 to 490 (fragment 393-490), which does not contain the RNA-binding site, forms a right-handed helical ring that wraps around the N terminus of eIF4E. This conformational change was suggested in turn to engender an allosteric enhancement of the association of eIF4E with the cap structure (10). Such an interaction between mammalian eIF4GI and eIF4E has not been reported.To understand the mechanism by which eIF4GI stimulates the interaction of eIF4E with the cap structure in mammals, we reconstituted the eIF4E-cap recognition activity in vitro with purified eIF4E and eIF4GI recombinant proteins. Using a chemical cross-linking assay, we demonstrate that only mammalian eIF4GI fragments possessing RNA-binding activity enhance the cross-linking of eIF4E to the cap structure. Our data provide new insight into the mechanism of cap recognition by the eIF4E-eIF4GI complex.  相似文献   
76.
Both BMPs and Wnts play important roles in the regulation of bone formation. We examined the molecular mechanism regulating cross-talk between BMPs and Wnts in the osteoblastic differentiation of C2C12 cells. Canonical Wnts (Wnt1 and Wnt3a) but not non-canonical Wnts (Wnt5a and Wnt11) synergistically stimulated ALP activity in the presence of BMP-4. Wnt3a and BMP-4 synergistically stimulated the expression of type I collagen and osteonectin. However, Wnt3a did not stimulate ALP activity that was induced by a constitutively active BMP receptor or Smad1. Noggin and Dkk-1 suppressed the synergistic effect of BMP-4 and Wnt3a, but Smad7 did not. Overexpression of β-catenin did not affect BMP-4-induced ALP activity. By contrast, inhibition or stimulation of GSK3β activity resulted in either stimulation or suppression of ALP activity, respectively, in the presence of BMP-4. Taken together, these findings suggest that BMPs and canonical Wnts may regulate osteoblastic differentiation, especially at the early stages, through a GSK3β-dependent but β-catenin-independent mechanism.  相似文献   
77.
Recent studies have indicated that acetylcholine (ACh) plays a vital role in various tissues, while the role of ACh in bone metabolism remains unclear. Here we demonstrated that ACh induced cell proliferation and reduced alkaline phosphatase (ALP) activity via nicotinic (nAChRs) and muscarinic acetylcholine receptors (mAChRs) in osteoblasts. We detected mRNA expression of several nAChRs and mAChRs. Furthermore, we showed that cholinergic components were up-regulated and subunits/subtypes of acetylcholine receptors altered during osteoblast differentiation. To our knowledge, this is the first report demonstrating that osteoblasts express specific acetylcholine receptors and cholinergic components and that ACh plays a possible role in regulating the proliferation and differentiation of osteoblasts.  相似文献   
78.
BACKGROUND: A complicated malformation of the fundus accompanied by typical ocular coloboma was detected in albino fatty liver Shionogi (FLS) mice. We elucidated a new type of 3-dimensional anomalous structure inside the eye in this mouse strain. METHODS: The fundi of FLS mice aged 1, 3, 5, and 20 weeks were observed intensively, both macroscopically and by light microscopy. For the prenatal study, coronal serial sections of eyes of FLS embryos were examined by light microscopy on gestation day (GD) 15.0. RESULTS: The frequency of ocular coloboma was almost 70% in FLS mice, and the inheritance mode of this anomaly is suggested to be autosomal recessive with incomplete penetrance. Stereoscopic observation and light microscopy revealed that the mice had characteristic fundus features at any age during the postnatal period. Following ectopic ciliary epithelia, the surface of the retina protruded like a roof, and on the opposite side of the "roof," a translucent membrane without retinal tissue and choroidal tissue was also consistently detected in the inferior part of the fundus. On GD 15.0, the inner layer and the outer layer were not normally fused at the optic fissure, where a part of the outer layer was absent and the irregular fold of the inner layer was conspicuous in the colobomatous eye of the FLS embryo. CONCLUSIONS: The characteristics of the ocular coloboma in FLS mice are thought to be similar to a mild-type malformation in humans. These ocular defects seem to be situated along the failed fetal optic fissure.  相似文献   
79.
D-Lactate dehydrogenase protein 2 [Yeast 15 (1999) 1377; Biochem. Biophys. Res. Commun. 295 (2002) 910] was initially identified as the actin interacting protein 2 (Aip2p) using a two-hybrid screen to search for proteins that interact with actin [Nat. Struct. Biol. 2 (1995) 28], but no other evidence indicating an interaction between Aip2p and actin cytoskeleton has been reported so far. During our search for the protein conformation modifying activity, we serendipitously identified Aip2p isolated from Saccharomyces cerevisiae as exhibiting an interaction with F-actin both in vitro and in vivo. Incubation with Aip2p facilitated the formation of the circular form of F-actin in vitro, which exhibited an aberrant trypsin susceptibility. Overexpression of Aip2p induced multi-buds in yeast cells, whereas reduced expression interfered with the formation of the cleavage furrow for the cell division, which was rescued by the introduction of wild-type Aip2p. While Aip2p-treated F-actin in the circular form was negligibly stained by rhodamine-labeled phalloidin (rhodamine-phalloidin) in vitro, rhodamine-phalloidin staining profiles in actin interacting protein 2 gene (AIP2)-modified cells suggested a correlation between the conformation of F-actin and the expression of Aip2p in vivo. AIP2-deleted cells became sensitive to osmotic conditions, a hallmark of actin dysfunction. Finally, immunoprecipitation of yeast cells using anti-Aip2p antibody demonstrated that Aip2p associates with actin. These properties suggest that Aip2p may interact with F-actin in vivo and play an important role in the yeast cell morphology.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号