首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1626篇
  免费   209篇
  国内免费   1篇
  2021年   16篇
  2016年   17篇
  2015年   44篇
  2014年   45篇
  2013年   70篇
  2012年   69篇
  2011年   90篇
  2010年   59篇
  2009年   46篇
  2008年   56篇
  2007年   75篇
  2006年   78篇
  2005年   87篇
  2004年   75篇
  2003年   76篇
  2002年   69篇
  2001年   32篇
  2000年   60篇
  1999年   50篇
  1998年   22篇
  1997年   17篇
  1996年   18篇
  1995年   12篇
  1994年   17篇
  1993年   18篇
  1992年   38篇
  1991年   35篇
  1990年   31篇
  1989年   36篇
  1988年   22篇
  1987年   35篇
  1986年   30篇
  1985年   23篇
  1984年   35篇
  1983年   19篇
  1982年   13篇
  1981年   20篇
  1980年   28篇
  1979年   16篇
  1978年   18篇
  1977年   23篇
  1976年   22篇
  1975年   19篇
  1974年   19篇
  1973年   18篇
  1972年   19篇
  1969年   13篇
  1967年   9篇
  1966年   10篇
  1965年   9篇
排序方式: 共有1836条查询结果,搜索用时 15 毫秒
121.
Trials in the 1990s demonstrated that medical therapy is as effective as invasive therapies for treating single-vessel coronary disease. Yet more recent studies enrolling patients with this condition have focused on evaluating only invasive approaches, namely, stenting versus coronary artery bypass surgery. Several ethical and scientific questions remain unanswered regarding the conduct of these later trials. Were they justified? Why wasn't a medical therapy arm included? Were subjects informed about the availability of medical therapy as an equivalent option? Was optimized medical therapy given prior to randomization? The absence of clear answers to these questions raises the possibility of serious bias in favor of invasive interventions. Considering that medical therapy is underutilized in patients with coronary disease, efforts should focus more on increasing utilization of medical therapy and proper selection of noninvasive interventions.  相似文献   
122.
The most common form of Ca(2+) signaling by Gq-coupled receptors entails activation of PLCbeta2 by Galphaq to generate IP(3) and evoke Ca(2+) release from the ER. Another form of Ca(2+) signaling by G protein-coupled receptors involves activation of Gi to release Gbetagamma, which activates PLCbeta1. Whether Gbetagamma has additional roles in Ca(2+) signaling is unknown. Introduction of Gbetagamma into cells activated Ca(2+) release from the IP(3) Ca(2+) pool and Ca(2) oscillations. This can be due to activation of PLCbeta1 or direct activation of the IP(3)R by Gbetagamma. We report here that Gbetagamma potently activates the IP(3) receptor. Thus, Gbetagamma-triggered [Ca(2+)](i) oscillations are not affected by inhibition of PLCbeta. Coimmunoprecipitation and competition experiments with Gbetagamma scavengers suggest binding of Gbetagamma to IP(3) receptors. Furthermore, Gbetagamma inhibited IP(3) binding to IP(3) receptors. Notably, Gbetagamma activated single IP(3)R channels in native ER as effectively as IP(3). The physiological significance of this form of signaling is demonstrated by the reciprocal sensitivity of Ca(2+) signals evoked by Gi- and Gq-coupled receptors to Gbetagamma scavenging and PLCbeta inhibition. We propose that gating of IP(3)R by Gbetagamma is a new mode of Ca(2+) signaling with particular significance for Gi-coupled receptors.  相似文献   
123.
CD1d-restricted T cells (NKT cells) are innate memory cells activated by lipid Ags and play important roles in the initiation and regulation of the immune response. However, little is known about the trafficking patterns of these cells or the tissue compartment in which they exert their regulatory activity. In this study, we determined the chemokine receptor profile expressed by CD1d-restricted T cells found in the peripheral blood of healthy volunteers as well as CD1d-restricted T cell clones. CD1d-restricted T cells were identified by Abs recognizing the invariant Valpha24 TCR rearrangement or by binding to CD1d-Fc fusion tetramers loaded with alpha-GalCer. CD1d-restricted T cells in the peripheral blood and CD1d-restricted T cell clones expressed high levels of CXCR3, CCR5, and CCR6; intermediate levels of CXCR4 and CXCR6; and low levels of CXCR1, CCR1, CCR2, and CX(3)CR1, a receptor pattern often associated with tissue-infiltrating effector Th1 cells and CD8+ T cells. Very few of these cells expressed the lymphoid-homing receptors CCR7 or CXCR5. CCR4 was expressed predominantly on CD4+, but not on double-negative CD1d-restricted T cells, which may indicate differential trafficking patterns for these two functionally distinct subsets. CD1d-restricted T cell clones responded to chemokine ligands for CXCR1/2, CXCR3, CXCR4, CXCR6, CCR4, and CCR5 in calcium flux and/or chemotaxis assays. These data indicate that CD1d-restricted T cells express a chemokine receptor profile most similar to Th1 inflammatory homing cells and suggest that these cells perform their function in peripheral tissue sites rather than in secondary lymphoid organs.  相似文献   
124.
In mice, activation of the Notch pathway in T cells by antigen-presenting cells overexpressing Notch ligands favors differentiation of regulatory T lymphocytes responsible for antigen-specific tolerance. To determine whether this mechanism operates in human T cells, we used Epstein-Barr virus-positive lymphoblastoid cell lines (EBV-LCL) as our (viral) antigen-presenting cells and overexpressed the Notch ligand Jagged-1 (EBV-LCL J1) by adenoviral transduction. The EBV-LCL J1s were cocultured with autologous T cells, and the proliferative and cytotoxic responses to EBV antigens were measured. Transduction had no effect on EBV-LCL expression of major histocompatibility complex (MHC) antigens or of costimulatory molecules CD80, CD86, and CD40. However, we observed a 35% inhibition of proliferation and a >65% reduction in cytotoxic-T-cell activity, and interleukin 10 production was increased ninefold. These EBV-LCL J1-stimulated T lymphocytes act as antigen-specific regulatory cells, since their addition to fresh autologous T cells cultured with autologous nontransduced EBV-LCL cells significantly inhibited both proliferation and cytotoxic effector function. Within the inhibitory population, CD4(+)CD25(+) and CD8(+)CD25(-) T cells had the greatest activity. This inhibition appears to be antigen-specific, since responses to Candida and cytomegalovirus antigens were unaffected. Hence, transgenic expression of Jagged-1 by antigen-presenting cells can induce antigen-specific regulatory T cells in humans and modify immune responses to viral antigens.  相似文献   
125.
NAD+ is an essential co-enzyme for redox reactions and is consumed in lysine deacetylation and poly(ADP-ribosyl)ation. NAD+ synthetase catalyzes the final step in NAD+ synthesis in the well characterized de novo, salvage, and import pathways. It has been long known that eukaryotic NAD+ synthetases use glutamine to amidate nicotinic acid adenine dinucleotide while many purified prokaryotic NAD+ synthetases are ammonia-dependent. Earlier, we discovered that glutamine-dependent NAD+ synthetases contain N-terminal domains that are members of the nitrilase superfamily and hypothesized that these domains function as glutamine amidotransferases for the associated synthetases. Here we show yeast glutamine-dependent NAD+ synthetase Qns1 requires both the nitrilase-related active-site residues and the NAD+ synthetase active-site residues for function in vivo. Despite failure to complement the lethal phenotype of qns1 disruption, the former mutants retain ammonia-dependent NAD+ synthetase activity in vitro, whereas the latter mutants retain basal glutaminase activity. Moreover, the two classes of mutants fail to trans-complement despite forming a stable heteromultimer in vivo. These data indicate that the nitrilase-related domain in Qns1 is the fourth independently evolved glutamine amidotransferase domain to have been identified in nature and that glutamine-dependence is an obligate phenomenon involving intramolecular transfer of ammonia over a predicted distance of 46 A from one active site to another within Qns1 monomers.  相似文献   
126.
Nicotinamide-adenine dinucleotide (NAD+) synthetases catalyze the last step in NAD+ metabolism in the de novo, import, and salvage pathways that originate from tryptophan (or aspartic acid), nicotinic acid, and nicotinamide, respectively, and converge on nicotinic acid mononucleotide. NAD+ synthetase converts nicotinic acid adenine dinucleotide to NAD+ via an adenylylated intermediate. All of the known eukaryotic NAD+ synthetases are glutamine-dependent, hydrolyzing glutamine to glutamic acid to provide the attacking ammonia. In the prokaryotic world, some NAD+ synthetases are glutamine-dependent, whereas others can only use ammonia. Earlier, we noted a perfect correlation between presence of a domain related to nitrilase and glutamine dependence and then proved in the accompanying paper (Bieganowski, P., Pace, H. C., and Brenner, C. (2003) J. Biol. Chem. 278, 33049-33055) that the nitrilase-related domain is an essential, obligate intramolecular, thiol-dependent glutamine amidotransferase in the yeast NAD+ synthetase, Qns1. Independently, human NAD+ synthetase was cloned and shown to depend on Cys-175 for glutamine-dependent but not ammonia-dependent NAD+ synthetase activity. Additionally, it was claimed that a 275 amino acid open reading frame putatively amplified from human glioma cell line LN229 encodes a human ammonia-dependent NAD+ synthetase and this was speculated largely to mediate NAD+ synthesis in human muscle tissues. Here we establish that the so-called NADsyn2 is simply ammonia-dependent NAD+ synthetase from Pseudomonas, which is encoded on an operon with nicotinic acid phosphoribosyltransferase and, in some Pseudomonads, with nicotinamidase.  相似文献   
127.
Speculation has long surrounded the question of whether past exposure to ionizing radiation leaves a unique permanent signature in the genome. Intrachromosomal rearrangements or deletions are produced much more efficiently by densely ionizing radiation than by chemical mutagens, x-rays, or endogenous aging processes. Until recently, such stable intrachromosomal aberrations have been very hard to detect, but a new chromosome band painting technique has made their detection practical. We report the detection and quantification of stable intrachromosomal aberrations in lymphocytes of healthy former nuclear-weapons workers who were exposed to plutonium many years ago. Even many years after occupational exposure, more than half the blood cells of the healthy plutonium workers contain large (>6 Mb) intrachromosomal rearrangements. The yield of these aberrations was highly correlated with plutonium dose to the bone marrow. The control groups contained very few such intrachromosomal aberrations. Quantification of this large-scale chromosomal damage in human populations exposed many years earlier will lead to new insights into the mechanisms and risks of cytogenetic damage.  相似文献   
128.
It has long been accepted that radiation-induced genetic effects require that DNA be hit and damaged directly by the radiation. Recently, evidence has accumulated that in cell populations exposed to low doses of alpha particles, biological effects occur in a larger proportion of cells than are estimated to have been traversed by alpha particles. The end points observed include chromosome aberrations, mutations and gene expression. The development of a fast single-cell microbeam now makes it possible to expose a precisely known proportion of cells in a population to exactly defined numbers of alpha particles, and to assay for oncogenic transformation. The single-cell microbeam delivered no, one, two, four or eight alpha particles through the nuclei of all or just 10% of C3H 10T1/2 cells. We show that (a) more cells can be inactivated than were actually traversed by alpha particles and (b) when 10% of the cells on a dish are exposed to alpha particles, the resulting frequency of induced transformation is not less than that observed when every cell on the dish is exposed to the same number of alpha particles. These observations constitute evidence suggesting a bystander effect, i.e., that unirradiated cells are responding to damage induced in irradiated cells. This bystander effect in a biological system of relevance to carcinogenesis could have significant implications for risk estimation for low-dose radiation.  相似文献   
129.
Gilligan P  Brenner S  Venkatesh B 《Gene》2002,294(1-2):35-44
The compact genome of the pufferfish, Fugu rubripes, has been proposed as a 'reference' genome to aid in annotating and analysing the human genome. We have annotated and compared 85 kb of Fugu sequence containing 17 genes with its homologous loci in the human draft genome and identified three 'novel' human genes that were missed or incompletely predicted by the previous gene prediction methods. Two of the novel genes contain zinc finger domains and are designated ZNF366 and ZNF367. They map to human chromosomes 5q13.2 and 9q22.32, respectively. The third novel gene, designated C9orf21, maps to chromosome 9q22.32. This gene is unique to vertebrates, and the protein encoded by it does not contain any known domains. We could not find human homologs for two Fugu genes, a novel chemokine gene and a kinase gene. These genes are either specific to teleosts or lost in the human lineage. The Fugu-human comparison identified several conserved non-coding sequences in the promoter and intronic regions. These sequences, conserved during 450 million years of vertebrate evolution, are likely to be involved in gene regulation. The 85 kb Fugu locus is dispersed over four human loci, occupying about 1.5 Mb. Contiguity is conserved in the human genome between six out of 16 Fugu gene pairs. These contiguous chromosomal segments should share a common evolutionary history dating back to the common ancestor of mammals and teleosts. We propose contiguity as strong evidence to identify orthologous genes in distant organisms. This study confirms the utility of the Fugu as a supplementary tool to uncover and confirm novel genes and putative gene regulatory regions in the human genome.  相似文献   
130.
Brenner C 《Biochemistry》2002,41(29):9003-9014
HIT (histidine triad) proteins, named for a motif related to the sequence HphiHphiHphiphi (phi, a hydrophobic amino acid), are a superfamily of nucleotide hydrolases and transferases, which act on the alpha-phosphate of ribonucleotides, and contain a approximately 30 kDa domain that is typically either a homodimer of approximately 15 kDa polypeptides with two active-sites or an internally, imperfectly repeated polypeptide that retains a single HIT active site. On the basis of sequence, substrate specificity, structure, evolution, and mechanism, HIT proteins can be classified into the Hint branch, which consists of adenosine 5'-monophosphoramide hydrolases, the Fhit branch, which consists of diadenosine polyphosphate hydrolases, and the GalT branch, which consists of specific nucleoside monophosphate transferases, including galactose-1-phosphate uridylyltransferase, diadenosine tetraphosphate phosphorylase, and adenylyl sulfate:phosphate adenylytransferase. At least one human representative of each branch is lost in human diseases. Aprataxin, a Hint branch hydrolase, is mutated in ataxia-oculomotor apraxia syndrome. Fhit is lost early in the development of many epithelially derived tumors. GalT is deficient in galactosemia. Additionally, ASW is an avian Hint family member that has evolved to have unusual gene expression properties and the complete loss of its nucleotide binding site. The potential roles of ASW and Hint in avian sexual development are discussed elsewhere. Here we review what is known about biological activities of HIT proteins, the structural and biochemical bases for their functions, and propose a new enzyme mechanism for Hint and Fhit that may account for the differences between HIT hydrolases and transferases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号