首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   14篇
  2023年   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   9篇
  2017年   5篇
  2016年   7篇
  2015年   7篇
  2014年   8篇
  2013年   4篇
  2012年   15篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1971年   1篇
排序方式: 共有109条查询结果,搜索用时 656 毫秒
101.
102.
The study of fluid fronts formed in porous media is important for enhanced oil recovery. The purposes of this study are to simulate waterflooding and to investigate influential factors on the fluid front movement through a micro-fracture and through simple porous media with different grain geometries. This study used the Shan–Chen form of the Lattice Boltzmann Method (LBM). An increase in the velocity is found to result in viscous fingering, whereas an increase in the wettability of the displacing fluid and the dynamic viscosity ratio creates a piston form of the fluid front. In porous media with the same porosities, various geometries act differently as obstacles against fluid flow from the inlet to the outlet. By enlarging the cross-sectional area of grains in the fluid paths and making them more tortuous, narrower and more twisted films of viscous fingering are formed. The sweep efficiency was also determined under various conditions: with a fixed capillary number, neutral wettability and different viscosity ratios; and with a fixed capillary number, viscosity ratio of (1/3) and wet or non-wet conditions. In all cases, the best sweep efficiency was obtained with grains of diamond geometry. Generally, the least sweep efficiency occurs with grains of star geometry. Simulation results verified the strength and accuracy of LBM predictions.  相似文献   
103.
Double-strand breaks (DSBs) occur frequently during cell growth. Due to the presence of repeated sequences in the genome, repair of a single DSB can result in gene conversion, translocation, deletion or tandem duplication depending on the mechanism and the sequence chosen as partner for the recombinational repair. Here, we study how yeast cells repair a single, inducible DSB when there are several potential donors to choose from, in the same chromosome and elsewhere in the genome. We systematically investigate the parameters that affect the choice of mechanism, as well as its genetic regulation. Our results indicate that intrachromosomal homologous sequences are always preferred as donors for repair. We demonstrate the occurrence of a novel tri-partite repair product that combines ectopic gene conversion and deletion. In addition, we show that increasing the distance between two repeated sequences enhances the dependence on Rad51 for colony formation after DSB repair. This is due to a role of Rad51 in the recovery from the checkpoint signal induced by the DSB. We suggest a model for the competition between the different homologous recombination pathways. Our model explains how different repair mechanisms are able to compensate for each other during DSB repair.  相似文献   
104.
In a previous study, we showed that the halophyte plant model Thellungiella salsuginea was more tolerant to phenanthrene (Polycyclic Aromatic Hydrocarbon: PAH) than its relative glycophyte Arabidopsis thaliana. In the present work, we investigated the potential of another halophyte with higher biomass production, Cakile maritma, to reduce phenanthrene phytotoxicity. Sand was used instead of arable soil with the aim to avoid pollutant degradation by microorganisms or their interaction with the plant. After 6 weeks of treatment by 500 ppm phenanthrene (Phe), stressed plants showed a severe reduction (–73%) in their whole biomass, roots being more affected than leaves and stems. In parallel, Guaiacol peroxidase (GPX) activity was increased by 185 and 62% in leaves and roots, respectively. Non-enzymatic antioxidant capacity (assayed by ABTS test) was maintained unchanged in all plant organs. The model halophytic plant Thellungiella salsuginea was used as a biomarker of phenanthrene stress severity and was grown at 0 (control), 125, 250, and 375 ppm. T. salsuginea plants grown on the sand previously contaminated by 500 ppm Phe then treated by C. maritma culture (phytoremediation culture) showed similar biomass production as plants subjected to 125 ppm Phe. This suggests that the phytotoxic effects of phenanthrene were reduced by 75% by the 6-week treatment by C. maritima. Our findings indicate that C. maritima can constitute a potentially good candidate for PAH phytoremediation.  相似文献   
105.
106.
Fruits harbour abundant and diverse microbial communities that protect them from post-harvest pathogens. Identification of functional traits associated with a given microbiota can provide a better understanding of their potential influence. Here, we focused on the epiphytic microbiome of apple fruit. We suggest that shotgun metagenomic data can indicate specific functions carried out by different groups and provide information on their potential impact. Samples were collected from the surface of ‘Golden Delicious’ apples from four orchards that differ in their geographic location and management practice. Approximately 1 million metagenes were predicted based on a high-quality assembly. Functional profiling of the microbiome of fruits from orchards differing in their management practice revealed a functional shift in the microbiota. The organic orchard microbiome was enriched in pathways involved in plant defence activities; the conventional orchard microbiome was enriched in pathways related to the synthesis of antibiotics. The functional significance of the variations was explored using microbial network modelling algorithms to reveal the metabolic role of specific phylogenetic groups. The analysis identified several associations supported by other published studies. For example, the analysis revealed the nutritional dependencies of the Capnodiales group, including the Alternaria pathogen, on aromatic compounds.  相似文献   
107.
We present the first worldwide study on the apple (Malus × domestica) fruit microbiome that examines questions regarding the composition and the assembly of microbial communities on and in apple fruit. Results revealed that the composition and structure of the fungal and bacterial communities associated with apple fruit vary and are highly dependent on geographical location. The study also confirmed that the spatial variation in the fungal and bacterial composition of different fruit tissues exists at a global level. Fungal diversity varied significantly in fruit harvested in different geographical locations and suggests a potential link between location and the type and rate of postharvest diseases that develop in each country. The global core microbiome of apple fruit was represented by several beneficial microbial taxa and accounted for a large fraction of the fruit microbial community. The study provides foundational information about the apple fruit microbiome that can be utilized for the development of novel approaches for the management of fruit quality and safety, as well as for reducing losses due to the establishment and proliferation of postharvest pathogens. It also lays the groundwork for studying the complex microbial interactions that occur on apple fruit surfaces.  相似文献   
108.
109.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号