首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7782篇
  免费   498篇
  国内免费   12篇
  2023年   17篇
  2022年   38篇
  2021年   150篇
  2020年   92篇
  2019年   113篇
  2018年   165篇
  2017年   152篇
  2016年   275篇
  2015年   401篇
  2014年   527篇
  2013年   555篇
  2012年   655篇
  2011年   598篇
  2010年   343篇
  2009年   335篇
  2008年   469篇
  2007年   462篇
  2006年   427篇
  2005年   387篇
  2004年   366篇
  2003年   316篇
  2002年   271篇
  2001年   194篇
  2000年   173篇
  1999年   121篇
  1998年   54篇
  1997年   41篇
  1996年   39篇
  1995年   49篇
  1994年   28篇
  1993年   18篇
  1992年   55篇
  1991年   30篇
  1990年   39篇
  1989年   36篇
  1988年   31篇
  1987年   23篇
  1986年   19篇
  1985年   26篇
  1984年   23篇
  1983年   15篇
  1982年   18篇
  1981年   10篇
  1979年   18篇
  1978年   15篇
  1976年   9篇
  1975年   8篇
  1974年   14篇
  1973年   13篇
  1972年   8篇
排序方式: 共有8292条查询结果,搜索用时 15 毫秒
941.
DNA damage in eukaryotic cells induces signaling pathways mediated by the ATM, p53 and ERK proteins, but the interactions between these pathways are not completely known. To address this issue, we performed a time course analysis in human embryonic fibroblast cells treated with DNA-damaging agents. DNA damage induced the phosphorylation of p53 at Ser 15 (p-p53) and the phosphorylation of ERK (p-ERK). Inhibition of p53 by a dominant negative mutant or in p53(-/-) fibroblast cells abolished ERK phosphorylation. ERK inhibitor prevented p53 phosphorylation, indicating that phosphorylations of p53 and p-ERK are interdependent each other. A time course analysis showed that ATM interacted with p-p53 and p-ERK in early time (0.5 h) and interaction between ATM-bound p-p53 and p-ERK or ATM-bound p-ERK and p-p53 occurred in late time (3 h) of DNA damage. These results indicate that ATM mediates interdependent activation of p53 and ERK through formation of a ternary complex between p-p53 and p-ERK in response to DNA damage to cause growth arrest.  相似文献   
942.
This study was aimed to search new genetic variants in the bovine FABP4 gene as molecular markers for meat quality and carcass traits. PCR–RFLP analysis revealed that three SNPs located at nucleotide positions g.2834C>G, g.3533T>A, and g.3691G>A were identified based on a GenBank accession number (NC_007312.4). Sequence analysis revealed that SNPs were located in intron 1 (g.2834C>G) and 2 (g.3533T>A), and an exon 3 (g.3691G>A), showing allele frequencies as 0.592, 0.579, and 0.789, respectively. Genetic variabilities of heterozygosity (He) and polymorphic information contents (PIC) were estimated for g.2834C>G (0.608 and 0.531), g.3533T>A (0.615 and 0.539), and g.3691G>A (0.498 and 0.401) loci, respectively. A SNP located in the exon 3 of FABP4 was characterized and associated with desirable increases of MS (marbling scores) and MG (meat quality grades) in Hanwoo. The statistical analysis revealed that additive effects by GG genotypes in g.3691G>A SNP were significantly greater than AA genotypes in MS and MG traits. These findings suggest that the FABP4g.3691G>A SNP will be a useful candidate locus to maximize economic benefits for cattle populations.  相似文献   
943.
944.
The liver is a crossroad for metabolism of lipid and carbohydrates, with acetyl-CoA serving as an important metabolic intermediate and a precursor for fatty acid and cholesterol biosynthesis pathways. A better understanding of the regulation of these pathways requires an experimental approach that provides both quantitative metabolic flux measurements and mechanistic insight. Under conditions of high carbohydrate availability, excess carbon is converted into free fatty acids and triglyceride for storage, but it is not clear how excessive carbohydrate availability affects cholesterol biosynthesis. To address this, C57BL/6J mice were fed either a low-fat, high-carbohydrate diet or a high-fat, carbohydrate-free diet. At the end of the dietary intervention, the two groups received (2)H(2)O to trace de novo fatty acid and cholesterol synthesis, and livers were collected for gene expression analysis. Expression of lipid and glucose metabolism genes was determined using a custom-designed pathway focused PCR-based gene expression array. The expression analysis showed downregulation of cholesterol biosynthesis genes and upregulation of fatty acid synthesis genes in mice receiving the high-carbohydrate diet compared with the carbohydrate-free diet. In support of these findings, (2)H(2)O tracer data showed that fatty acid synthesis was increased 10-fold and cholesterol synthesis was reduced by 1.6-fold in mice fed the respective diets. In conclusion, by applying gene expression analysis and tracer methodology, we show that fatty acid and cholesterol synthesis are differentially regulated when the carbohydrate intake in mice is altered.  相似文献   
945.
Although the underlying cause of Parkinson's disease (PD) is not well characterized, epidemiological studies suggest that exposure to agricultural chemicals is a risk factor for PD. Fluazinam (FZN) is a new active ingredient for the control of grey mould, belonging to the novel broad spectrum phenylpyridinamine fungicides. We used human neuroblastoma SH-SY5Y cells to investigate mechanisms of dopaminergic cell death in response to FZN. FZN treatment produced dose-dependent cytotoxicity, and decreased the tyrosine hydroxylase (TH) expression in SH-SY5Y cells. We provided evidence for the occurrence of oxidative stress and oxidative damage during FZN exposure on dopaminergic cells through the measurement of reactive oxygen species (ROS) in cells with DCFH-DA. The cytotoxic effects of FZN appear to involve an increase in ROS generation since pretreatment with N-acetyl cysteine (NAC), an anti-oxidant, reduced cell death. After FZN treatment, dopamine (DA) levels decreased in both cell and culture media, and oxidative effects of FZN were blocked by NAC pretreatment. We show that cell death in response to FZN was due to apoptosis since FZN exposure results in an increased in cytochrome c release into the cytosol and activated caspase-3 through p38 and JNK signaling. Furthermore, the blocking of p38 or JNK signaling inhibits FZN-induced cell death. Phosphorylation of mitogen-activated protein kinases precedes cytochrome c release and caspase-3 activation. This cellular response is characteristic of mitochondrial dysfunction. Therefore, we also investigated the effect of FZN on mitochondrial complex I activity in FZN-treated cell. Interestingly, we show that FZN inhibited the complex I activity. Thus in this study, we report a new mode of action by which the fungicide FZN could triggers apoptosis.  相似文献   
946.
Salmonella enterica and Escherichia coli O157:H7 are major food-borne pathogens causing serious illness. Phage SFP10, which revealed effective infection of both S. enterica and E. coli O157:H7, was isolated and characterized. SFP10 contains a 158-kb double-stranded DNA genome belonging to the Vi01 phage-like family Myoviridae. In vitro adsorption assays showed that the adsorption constant rates to both Salmonella enterica serovar Typhimurium and E. coli O157:H7 were 2.50 × 10−8 ml/min and 1.91 × 10−8 ml/min, respectively. One-step growth analysis revealed that SFP10 has a shorter latent period (25 min) and a larger burst size (>200 PFU) than ordinary Myoviridae phages, suggesting effective host infection and lytic activity. However, differential development of resistance to SFP10 in S. Typhimurium and E. coli O157:H7 was observed; bacteriophage-insensitive mutant (BIM) frequencies of 1.19 × 10−2 CFU/ml for S. Typhimurium and 4.58 × 10−5 CFU/ml for E. coli O157:H7 were found, indicating that SFP10 should be active and stable for control of E. coli O157:H7 with minimal emergence of SFP10-resistant pathogens but may not be for S. Typhimurium. Specific mutation of rfaL in S. Typhimurium and E. coli O157:H7 revealed the O antigen as an SFP10 receptor for both bacteria. Genome sequence analysis of SFP10 and its comparative analysis with homologous Salmonella Vi01 and Shigella phiSboM-AG3 phages revealed that their tail fiber and tail spike genes share low sequence identity, implying that the genes are major host specificity determinants. This is the first report identifying specific infection and inhibition of Salmonella Typhimurium and E. coli O157:H7 by a single bacteriophage.  相似文献   
947.
Fusobacterium nucleatum, one of the major causative bacteria of periodontitis, is classified into five subspecies (nucleatum, polymorphum, vincentii, animalis, and fusiforme) on the basis of the several phenotypic characteristics and DNA homology. This is the first report of the draft genome sequence of F. nucleatum subsp. fusiforme ATCC 51190(T).  相似文献   
948.
This article reports on the full genome sequence of Paenibacillus terrae HPL-003, which is a gram-positive, endospore-forming, xylanase-producing bacterium isolated from soil found in forest residue on Gara Mountain. The strain HPL-003 contains 6,083,395 bp with a G+C content of 46.77 mol%, 2,633 protein-coding genes, and 117 structural RNAs.  相似文献   
949.
A novel Gram-positive, aerobic, motile, hemolytic, endospore-forming and rod-shaped bacterium TW25T was isolated from a dead ark clam during a mass mortality event on the South coast of Korea. The strain grew optimally at 30°C, at pH 8–9, and with 1% (w/v) NaCl. The 16S rRNA gene sequence analysis indicated that strain TW25T was associated with the genus Ornithinibacillus and that it was most closely related to the type strain of Ornithinibacillus californiensis (98.5% similarity). The dominant cellular fatty acids were iso-C15:0, anteiso-C15:0 and C16:0. The peptidoglycan amino acid type was A4β, containing l-ornithine and d-aspartic acid. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, four unidentified phospholipids, two unidentified aminolipids and two unidentified lipids. The major respiratory quinone was menaquinone-7 (MK-7). The G + C content of genomic DNA was 36.7 mol%. DNA–DNA hybridization experiments with related strains revealed lower than 11 ± 3% relatedness. Based on this polyphasic taxonomic study, strain TW25T represents a novel species in the genus Ornithinibacillus, for which the name Ornithinibacillus scapharcae sp. nov. is proposed. The type strain is TW25T (=KACC 15116T = JCM 17314T).  相似文献   
950.
Transient receptor potential melastatin 7 (TRPM7) channels are divalent cation-selective ion channels that are permeable to Ca(2+) and Mg(2+). TRPM7 is ubiquitously expressed in vertebrate cells and contains both an ion channel and a kinase domain. TRPM7 plays an important role in regulating cellular homeostatic levels of Ca(2+) and Mg(2+) in mammalian cells. Although studies have shown that the kinase domain of TRPM7 is required for channel activation and can phosphorylate other target proteins, a systematic analysis of intact TRPM7 channel phosphorylation sites expressed in mammalian cells is lacking. We applied mass spectrometric proteomic techniques to identify and characterize the key phosphorylation sites in TRPM7 channels. We identified 14 phosphorylation sites in the cytoplasmic domain of TRPM7, eight of which have not been previously reported. The identification of phosphorylation sites using antibody-based immunopurification and mass spectrometry is an effective approach for defining the phosphorylation status of TRPM7 channels. The present results show that TRPM7 channels are phosphorylated at multiple sites, which serves as a mechanism to modulate the dynamic functions of TRPM7 channels in mammalian cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号