首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1623篇
  免费   231篇
  国内免费   3篇
  2021年   25篇
  2020年   22篇
  2019年   18篇
  2018年   36篇
  2017年   22篇
  2016年   51篇
  2015年   64篇
  2014年   79篇
  2013年   101篇
  2012年   123篇
  2011年   112篇
  2010年   93篇
  2009年   72篇
  2008年   71篇
  2007年   61篇
  2006年   64篇
  2005年   71篇
  2004年   60篇
  2003年   55篇
  2002年   51篇
  2001年   51篇
  2000年   53篇
  1999年   38篇
  1998年   24篇
  1997年   17篇
  1996年   13篇
  1995年   17篇
  1994年   13篇
  1993年   16篇
  1992年   23篇
  1991年   23篇
  1990年   25篇
  1989年   16篇
  1988年   24篇
  1987年   16篇
  1986年   20篇
  1985年   19篇
  1984年   18篇
  1983年   18篇
  1982年   19篇
  1980年   8篇
  1979年   10篇
  1978年   19篇
  1977年   10篇
  1976年   11篇
  1974年   12篇
  1973年   6篇
  1972年   10篇
  1971年   8篇
  1969年   6篇
排序方式: 共有1857条查询结果,搜索用时 18 毫秒
91.
92.
How abiotic and biotic factors constrain distribution limits at the harsh and benign edges of species ranges is hotly debated, partly because macroecological experiments testing the proximate causes of distribution limits are scarce. It has long been recognized – at least since Darwin’s On the Origin of Species – that a harsh climate strengthens competition and thus sets species range limits. Using thorough field manipulations along a large elevation gradient, we show the mechanisms by which temperature determines competition type, resulting in a transition from interference to exploitative competition from the lower to the upper elevation limits in burying beetles (Nicrophorus nepalensis). This transition is an example of Darwin’s classic hypothesis that benign climates favor direct competition for highly accessible resources while harsh climates result in competition through resources of high rivalry. We propose that identifying the properties of these key resources will provide a more predictive framework to understand the interplay between biotic and abiotic factors in determining geographic range limits.  相似文献   
93.
Atopic dermatitis (AD) is a cutaneous disease resulting from a defective barrier and dysregulated immune response. The severity scoring of atopic dermatitis (SCORAD) is used to classify AD. Noninvasive imaging approaches supplementary to SCORAD were investigated. Cr:forsterite laser‐based microscopy was employed to analyze endogenous third‐harmonic generation (THG) and second‐harmonic generation (SHG) signals from skin. Imaging parameters were compared between different AD severities. Three‐dimensional reconstruction of imaged skin layers was performed. Finally, statistic models from quantitative imaging parameters were developed for predicting disease severity. Our data demonstrate that THG signal intensity of lesional skin in AD were significantly increased and was positively correlated with AD severity. Characteristic gray level co‐occurrence matrix (GLCM) values were observed in more severe AD. In the 3D reconstruction video, individual dermal papilla and obvious fibrosis in the upper papillary dermis were easily identified. Our estimation models could predict the disease severity of AD patients with an accuracy of nearly 85%. The THG signal intensity and characteristic GLCM patterns are associated with AD severity and can serve as quantitative predictive parameters. Our imaging approach can be used to identify the histopathological changes of AD objectively, and to complement the SCORAD index, thus improving the accuracy of classifying AD severity.   相似文献   
94.
The switching on-and-off of I-kappaB kinase (IKK) and NF-kappaB occurs rapidly after signaling. How activated IKK becomes down-regulated is not well understood. Here we show that following tumor necrosis factor-alpha stimulation, protein phosphatase 2A (PP2A) association with IKK is increased. A heptad repeat in IKKgamma, helix 2 (HLX2), mediates PP2A recruitment. Two other heptad repeats downstream of HLX2, termed coiled-coil region 2 (CCR2) and leucine zipper (LZ), bind HLX2 and negatively regulate HLX2 interaction with PP2A. HTLV-1 transactivator Tax also binds HLX2, and this interaction is enhanced by CCR2 but reduced by LZ. In the presence of Tax, PP2A-IKKgamma binding is greatly strengthened. Interestingly, peptides spanning CCR2 and/or LZ disrupt IKKgamma-Tax and IKKgamma-PP2A interactions and potently inhibit NF-kappaB activation by Tax and tumor necrosis factor-alpha. We propose that when IKK is resting, HLX2, CCR2, and LZ form a helical bundle in which HLX2 is sequestered. The HLX2-CCR2-LZ bundle becomes unfolded by signal-induced modifications of IKKgamma or after Tax binding. In this conformation, IKK becomes activated. IKKgamma then recruits PP2A via the exposed HLX2 domain for rapid down-regulation of IKK. Tax-PP2A interaction, however, renders PP2A inactive, thus maintaining Tax-PP2A-IKK in an active state. Finally, CCR2 and LZ possibly inhibit IKK activation by stabilizing the HLX2-CCR2-LZ bundle.  相似文献   
95.
96.
Heterogeneous distribution of components in the biological membrane is critical in the process of cell polarization. However, little is known about the mechanisms that can generate and maintain the heterogeneous distribution of the membrane components. Here, we report that the propagating wave patterns of the bacterial Min proteins can impose steric pressure on the membrane, resulting in transport and directional accumulation of the component in the membrane. Therefore, the membrane component waves represent transport of the component in the membrane that is caused by the steric pressure gradient induced by the differential levels of binding and dissociation of the Min proteins in the propagating waves on the membrane surface. The diffusivity, majorly influenced by the membrane anchor of the component, and the repulsed ability, majorly influenced by the steric property of the membrane component, determine the differential spatial distribution of the membrane component. Thus, transportation of the membrane component by the Min proteins follows a simple physical principle, which resembles a linear peristaltic pumping process, to selectively segregate and maintain heterogeneous distribution of materials in the membrane.
97.
Abrin A-chain (ABRA) inhibits protein synthesis by its N-glycosidase activity as well as induces apoptosis, but the molecular mechanism of ABRA-induced cell death has been obscure. Using an ABRA mutant that lacks N-glycosidase activity as bait in a yeast two-hybrid system, a 30-kDa antioxidant protein-1 (AOP-1) was found to be an ABRA(E164Q)-interacting protein. The interaction was further confirmed in vitro by a glutathione S-transferase pull-down assay. The colocalization of endogenous AOP-1 and exogenous ABR proteins in the cell was demonstrated by confocal immunofluorescence. We also demonstrated that ABRA attenuates AOP-1 antioxidant activity in a dose-dependent manner and the intracellular level of reactive oxygen species (ROS) increases in ABR-treated cells. Moreover, ROS scavengers N-acetylcysteine and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl delayed programmed cell death. This indicates that ROS are important mediators of ABR-induced apoptosis. When ectopically expressed, AOP-1 blocked the release of cytochrome c and prevented apoptosis in ABR-treated cells. These findings suggest that the binding of ABRA to AOP-1 promotes apoptosis by inhibiting the mitochondrial antioxidant protein AOP-1, resulting in the increase of intracellular ROS and the release of cytochrome c from the mitochondria to the cytosol, which activates caspase-9 and caspase-3.  相似文献   
98.
Monoamine oxidase (MAO) is responsible for the oxidation of biogenic and dietary amines. It exists as two isoforms, A and B, which have a 70% amino acid identity and different substrate and inhibitor specificities. This study reports the identification of residues responsible for conferring this specificity in human MAO A and B. Using site-directed mutagenesis we reciprocally interchanged three pairs of corresponding nonconserved amino acids within the central portion of human MAO. Mutant MAO A-I335Y became like MAO B, which exhibits a higher preference for beta-phenylethylamine than for the MAO A preferred substrate serotonin (5-hydroxytryptamine), and became more sensitive to deprenyl (MAO B-specific inhibitor) than to clorgyline (MAO A-specific inhibitor). The reciprocal mutant MAO B-Y326I exhibited an increased preference for 5-hydroxytryptamine, a decreased preference for beta-phenylethylamine, and, similar to MAO A, was more sensitive to clorgyline than to deprenyl. These mutants also showed a distinct shift in sensitivity for the MAO A- and B-selective inhibitors Ro 41-1049 and Ro 16-6491. Mutant pair MAO A-T245I and MAO B-I236T and mutant pair MAO A-D328G and MAO B-G319D reduced catalytic activity but did not alter specificity. Our results indicate that Ile-335 in MAO A and Tyr-326 in MAO B play a critical role in determining substrate and inhibitor specificities in human MAO A and B.  相似文献   
99.
Human herpesvirus 8 (HHV8) is the primary viral etiologic agent in Kaposi's sarcoma (KS). However, individuals dually infected with both HHV8 and human immunodeficiency virus type 1 (HIV-1) show an enhanced prevalence of KS when compared with those singularly infected with HHV8. Host immune suppression conferred by HIV infection cannot wholly explain this increased presentation of KS. To better understand how HHV8 and HIV-1 might interact directly in the pathogenesis of KS, we queried for potential regulatory interactions between the two viruses. Here, we report that HHV8 and HIV-1 reciprocally up-regulate the gene expression of each other. We found that the KIE2 immediate-early gene product of HHV8 interacted synergistically with Tat in activating expression from the HIV-1 long terminal repeat. On the other hand, HIV-1 encoded Tat and Vpr proteins increased intracellular HHV8-specific expression. These results provide molecular insights correlating coinfection with HHV8 and HIV-1 with an unusually high incidence of KS.  相似文献   
100.
Cdc13p is a single strand telomere-binding protein of Saccharomyces cerevisiae; its telomere-binding region is within amino acids 451-693, Cdc13(451-693)p. In this study, we used purified Cdc13p and Cdc13(451-693)p to characterize their telomere binding activity. We found that the binding specificity of single-stranded TG(1-3) DNA by these two proteins is similar. However, the affinity of Cdc13(451-693)p to DNA was slightly lower than that of Cdc13p. The binding of telomeric DNA by these two proteins was disrupted at NaCl concentrations higher than 0.3 m, indicating that electrostatic interaction contributed significantly to the binding process. Because both proteins bound to strand TG(1-3) DNA positioned at the 3' end, the 5' end, or in the middle of the oligonucleotide substrates, our results indicated that the location of TG(1-3) in single-stranded DNA does not appear to be important for Cdc13p binding. Moreover, using DNase I footprint analysis, the structure of the telomeric DNA complexes of Cdc13p and Cdc13(451-693)p was analyzed. The DNase I footprints of these two proteins to three different telomeric DNA substrates were virtually identical, indicating that the telomere contact region of Cdc13p is within Cdc13(451-693)p. Together, the binding properties of Cdc13p and its binding domain support the theory that the specific binding of Cdc13p to telomeres is an important feature of telomeres that regulate telomerase access and/or differentiate natural telomeres from broken ends.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号