首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1154篇
  免费   54篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   5篇
  2017年   13篇
  2016年   9篇
  2015年   29篇
  2014年   32篇
  2013年   57篇
  2012年   56篇
  2011年   83篇
  2010年   52篇
  2009年   51篇
  2008年   97篇
  2007年   92篇
  2006年   93篇
  2005年   115篇
  2004年   104篇
  2003年   86篇
  2002年   57篇
  2001年   8篇
  2000年   6篇
  1999年   7篇
  1998年   9篇
  1997年   12篇
  1996年   10篇
  1995年   7篇
  1994年   10篇
  1993年   8篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   9篇
  1988年   6篇
  1987年   2篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1208条查询结果,搜索用时 15 毫秒
31.
Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR. We first found that RRM1 was prone to aggregation and had three regions showing stable chemical shifts during misfolding. Moreover, mass spectrometric analysis of aggregated RRM1 revealed that one of the regions was located on protease-resistant β-strands containing two cysteines (Cys-173 and Cys-175), indicating that this region served as a core assembly interface in RRM1 aggregation. Although a fraction of RRM1 aggregates comprised disulfide-bonded oligomers, the substitution of cysteine(s) to serine(s) (C/S) resulted in unexpected acceleration of amyloid fibrils of RRM1 and disulfide-independent aggregate formation of full-length TDP-43. Notably, TDP-43 aggregates with RRM1-C/S required the C terminus, and replicated cytopathologies of ALS, including mislocalization, impaired RNA splicing, ubiquitination, phosphorylation, and motor neuron toxicity. Furthermore, RRM1-C/S accentuated inclusions of familial ALS-linked TDP-43 mutants in the C terminus. The relevance of RRM1-C/S-induced TDP-43 aggregates in ALS pathogenesis was verified by immunolabeling of inclusions of ALS patients and cultured cells overexpressing the RRM1-C/S TDP-43 with antibody targeting misfolding-relevant regions. Our results indicate that cysteines in RRM1 crucially govern the conformation of TDP-43, and aberrant self-assembly of RRM1 at amyloidogenic regions contributes to pathogenic conversion of TDP-43 in ALS.  相似文献   
32.
DOCK proteins constitute a family of evolutionarily conserved guanine nucleotide exchange factors (GEFs) for Rho family of GTPases. Although DOCK family proteins do not contain the Dbl homology domain typically found in GEFs, they mediate the GTP–GDP exchange reaction through DHR-2 domain. Accumulating evidence indicates that the DOCK proteins act as major GEFs in varied biological settings. For example, DOCK2, which is predominantly expressed in hematopoietic cells, regulates migration and activation of leukocytes through Rac activation. On the other hand, it was recently reported that mutations of DOCK8, another member of the DOCK family proteins, cause a combined immunodeficiency syndrome in humans. This article reviews the structure, functions and signaling of DOCK2 and DOCK8, especially focusing on their roles in immune responses.  相似文献   
33.
The alga Parachlorella kessleri, strain CCALA 255, grown under optimal conditions, is characterized by storage of energy in the form of starch rather than lipids. If grown in the complete medium, the cultures grew rapidly, producing large amounts of biomass in a relatively short time. The cells, however, contained negligible lipid reserves (1–10% of DW). Treatments inducing hyperproduction of storage lipids in P. kessleri biomass were described. The cultures were grown in the absence or fivefold decreased concentration of either nitrogen or phosphorus or sulfur. Limitation by all elements using fivefold or 10‐fold diluted mineral medium was also tested. Limitation with any macroelement (nitrogen, sulfur, or phosphorus) led to an increase in the amount of lipids; nitrogen limitation was the most effective. Diluted nutrient media (5‐ or 10‐fold) were identified as the best method to stimulate lipid overproduction (60% of DW). The strategy for lipid overproduction consists of the fast growth of P. kessleri culture grown in the complete medium to produce sufficient biomass (DW more than 10 g/L) followed by the dilution of nutrient medium to stop growth and cell division by limitation of all elements, leading to induction of lipid production and accumulation up to 60% DW. Cultivation conditions necessary for maximizing lipid content in P. kessleri biomass generated in a scale‐up solar open thin‐layer photobioreactor were described. Biotechnol. Bioeng. 2013; 110: 97–107. © 2012 Wiley Periodicals, Inc.  相似文献   
34.
35.
The modes of action of three xylanases (I, II and III) produced by Aspergillus niger van Tieghem on several substrates were investigated. Xylanase I possesed the strongest activity against xylooligosaccharides among the three enzymes and converted them into xylose and xylobiose. Xylanase II and III catalyzed a glycosylating reaction and produced higher polymerized xylooligosaccharides from xylotetraose or xylopentaose. Among three enzymes, xylanase II could split α1,3-arabinofuranosidic bond of arabinose-xylose mixed oligosaccharides.

In the case of hydrolysis by three xylanases on xylan and arabinoxylan, the maximum hydrolysis degree and the reaction products were compared with each other. From the results, some speculation were made concerning the modes of action of the enzymes.  相似文献   
36.

Objective

The objective of the present study was to examine the associations between metabolic syndrome (MS) components, such as overweight (OW), hypertension (HT), dyslipidemia (DL), and impaired glucose tolerance (IGT), and intervertebral disc degeneration (DD).

Design

The present study included 928 participants (308 men, 620 women) of the 1,011 participants in the Wakayama Spine Study. DD on magnetic resonance imaging was classified according to the Pfirrmann system. OW, HT, DL, and IGT were assessed using the criteria of the Examination Committee of Criteria for MS in Japan.

Results

Multivariable logistic regression analysis revealed that OW was significantly associated with cervical, thoracic, and lumbar DD (cervical: odds ratio [OR], 1.28; 95% confidence interval [CI], 0.92–1.78; thoracic: OR, 1.75; 95% CI, 1.24–2.51; lumbar: OR, 1.87; 95% CI, 1.06–3.48). HT and IGT were significantly associated with thoracic DD (HT: OR, 1.54; 95% CI, 1.09–2.18; IGT: OR, 1.65; 95% CI, 1.12–2.48). Furthermore, subjects with 1 or more MS components had a higher OR for thoracic DD compared with those without MS components (vs. no component; 1 component: OR, 1.58; 95% CI, 1.03–2.42; 2 components: OR, 2.60; 95% CI, 1.62–4.20; ≥3 components: OR, 2.62; 95% CI, 1.42–5.00).

Conclusion

MS components were significantly associated with thoracic DD. Furthermore, accumulation of MS components significantly increased the OR for thoracic DD. These findings support the need for further studies of the effects of metabolic abnormality on DD.  相似文献   
37.
The Rac-specific guanine nucleotide exchange factor (GEF) Asef is activated by binding to the tumor suppressor adenomatous polyposis coli mutant, which is found in sporadic and familial colorectal tumors. This activated Asef is involved in the migration of colorectal tumor cells. The GEFs for Rho family GTPases contain the Dbl homology (DH) domain and the pleckstrin homology (PH) domain. When Asef is in the resting state, the GEF activity of the DH-PH module is intramolecularly inhibited by an unidentified mechanism. Asef has a Src homology 3 (SH3) domain in addition to the DH-PH module. In the present study, the three-dimensional structure of Asef was solved in its autoinhibited state. The crystal structure revealed that the SH3 domain binds intramolecularly to the DH domain, thus blocking the Rac-binding site. Furthermore, the RT-loop and the C-terminal region of the SH3 domain interact with the DH domain in a manner completely different from those for the canonical binding to a polyproline-peptide motif. These results demonstrate that the blocking of the Rac-binding site by the SH3 domain is essential for Asef autoinhibition. This may be a common mechanism in other proteins that possess an SH3 domain adjacent to a DH-PH module.  相似文献   
38.
Liquid cultures were successfully generated from cotyledons of two Sonneratia species, S. alba and S. caseolaris in Murashige and Skoog (MS) medium containing 0.1 μmol L−1 2,4-dichlorophenoxyacetic acid (2,4-D). Adventitious roots differentiated from cotyledons of S. alba. Proliferated cells were subcultured and a large volume of suspension cells was subsequently established in 100-mL flasks. All the cytokinins tested inhibited cell proliferation. After three years of culture, the potential to differentiate was tested as indicated by greening of the cells. Greening occurred when suspension cells were transferred to solid MS medium with and without 0.1 μmol L−1 2,4-D. Greening was stimulated by low concentrations of the weak auxins indolebutyric acid (IBA) and naphthaleneacetic acid (NAA) while 2,4-D stimulated late-stage greening. Abscisic acid (ABA) inhibited greening. Gibberellic acid (GA3) at 1.0 μmol L−1 stimulated callus greening and was not inhibitory even when tested at high concentrations. Cytokinins were inhibitory in combination with 0.1 μmol L−1 of either IBA or NAA. The cause of different effects of plant hormones on growth and differentiation was discussed. Small-scale liquid media and 24-well culture plates of solid media methods developed in this paper are suitable for the optimization of hormonal conditions for cell proliferation and differentiation.  相似文献   
39.
Oleanane-type triterpene is one of the most widespread triterpenes found in plants, together with the lupane type, and these two types often occur together in the same plant. Bruguiera gymnorrhiza (L.) Lamk. and Rhizophora stylosa Griff. (Rhizophoraceae) are known to produce both types of triterpenes. Four oxidosqualene cyclase cDNAs were cloned from the leaves of B. gymnorrhiza and R. stylosa by a homology-based PCR method. The ORFs of full-length clones termed BgbAS (2280 bp, coding for 759 amino acids), BgLUS (2286 bp, coding for 761 amino acids), RsM1 (2280 bp, coding for 759 amino acids) and RsM2 (2316 bp coding for 771 amino acids) were ligated into yeast expression plasmid pYES2 under the control of the GAL1 promoter. Expression of BgbAS and BgLUS in GIL77 resulted in the production of beta-amyrin and lupeol, suggesting that these genes encode beta-amyrin and lupeol synthase (LUS), respectively. Furthermore, RsM1 produced germanicol, beta-amyrin, and lupeol in the ratio of 63 : 33 : 4, whereas RsM2 produced taraxerol, beta-amyrin, and lupeol in the proportions 70 : 17 : 13. This result indicates that these are multifunctional triterpene synthases. Phylogenetic analysis and sequence comparisons revealed that BgbAS and RsM1 demonstrated high similarities (78-93%) to beta-amyrin synthases, and were located in the same branch as beta-amyrin synthase. BgLUS formed a new branch for lupeol synthase that was closely related to the beta-amyrin synthase cluster, whereas RsM2 was found in the first branch of the multifunctional triterpene synthase evolved from lupeol to beta-amyrin synthase. Based on these sequence comparisons and product profiles, we discuss the molecular evolution of triterpene synthases and the involvement of these genes in the formation of terpenoids in mangrove leaves.  相似文献   
40.
The Escherichia coli SeqA protein recognizes the 11 hemimethylated G-mA-T-C sites in the oriC region of the chromosome, and prevents replication over-initiation within one cell cycle. The crystal structure of the SeqA C-terminal domain with hemimethylated DNA revealed the N6-methyladenine recognition mechanism; however, the mechanism of discrimination between the hemimethylated and fully methylated states has remained elusive. In the present study, we performed mutational analyses of hemimethylated G-mA-T-C sequences with the minimal DNA-binding domain of SeqA (SeqA71–181), and found that SeqA71–181 specifically binds to hemimethylated DNA containing a sequence with a mismatched mA:G base pair [G-mA(:G)-T-C] as efficiently as the normal hemimethylated G-mA(:T)-T-C sequence. We determined the crystal structures of SeqA71–181 complexed with the mismatched and normal hemimethylated DNAs at 2.5 and 3.0 Å resolutions, respectively, and found that the mismatched mA:G base pair and the normal mA:T base pair are recognized by SeqA in a similar manner. Furthermore, in both crystal structures, an electron density is present near the unmethylated adenine, which is only methylated in the fully methylated state. This electron density, which may be due to a water molecule or a metal ion, can exist in the hemimethylated state, but not in the fully methylated state, because of steric clash with the additional methyl group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号