首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   11篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   2篇
  2014年   6篇
  2013年   15篇
  2012年   7篇
  2011年   5篇
  2010年   9篇
  2009年   6篇
  2008年   9篇
  2007年   9篇
  2006年   17篇
  2005年   13篇
  2004年   9篇
  2003年   7篇
  2002年   10篇
  2001年   12篇
  2000年   7篇
  1999年   10篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   6篇
  1988年   7篇
  1987年   12篇
  1986年   13篇
  1985年   9篇
  1984年   4篇
  1983年   9篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1975年   6篇
  1974年   8篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1966年   3篇
  1961年   1篇
排序方式: 共有309条查询结果,搜索用时 15 毫秒
81.
The 13C-NMR spectra of bacteriochlorophyll a formed in the presence of L-[1-13C]glutamate and [2-13C]glycine in Chromatium vinosum strain D were analyzed. The isotope in the glutamate was specifically incorporated into eight carbon atoms in the tetrapyrrole macrocycle derived from the C-5 of 5-aminolevulinic acid (ALA), and the 13C in glycine was incorporated into the methyl carbon of the methoxycarbonyl group attached to the isocyclic ring of bacteriochlorophyll a. These labeling patterns provide evidence for the exclusive operation of the C5 pathway in ALA biosynthesis in the bacterium. The 13C chemical shifts of two quaternary carbons (C-9 and C-16) of bacteriochlorophyll a were reassigned in the present study.  相似文献   
82.
Carbonic anhydrase (CA) of Chlamydomonas reinhardtii is a glycoprotein of 35 kDa which is localized outside the plasma membrane. The activity of CA was increased when the CO2 concentration during photoautotrophic growth was decreased to air level. After decreasing the CO2 concentration from 4% to 0.04%, several polypeptides including CA were induced continuously or transiently. To investigate the biosynthesis and intracellular processing of CA, the cells of wall-less mutant CW-15, which secretes CA into the culture medium, were pulse-labeled with radioactive arginine, chased, and radioactive proteins were immunoprecipitated with anti-CA serum. A 42-kDa polypeptide with isoelectric point (pI) of 7.1-7.3 was first synthesized. Within 5 min the molecular mass of this polypeptide was decreased to 35 kDa and it was then secreted into the culture medium within 30 min. This indicates that the former is the precursor form and the latter the mature form of CA. The primary translation product from poly(A)-rich RNA in a cell-free reticulocyte lysate system from a rabbit was a 38-kDa polypeptide. This was cotranslationally converted into the 42-kDa precursor in vitro in the presence of dog pancreatic microsomal membranes. As the 42-kDa precursor had a high affinity to concanavalin A, it was assumed to have a high-mannose-type oligosaccharide. The mature enzyme had a pI of 6.1-6.2 and was composed of more than two isoforms, which had a complex-type oligosaccharide with low affinity to concanavalin A. Chemical deglycosylation of the mature enzyme by trifluoromethanesulfonic acid indicated that the molecular mass of the polypeptide moiety was 32 kDa and the difference between this and the primary translation product suggests that cleavage of the polypeptide occurs during its biosynthesis.  相似文献   
83.
The 13C NMR spectra of the pheophorbide of bacteriochlorophyll c, formed in the presence of L-[1-13C]glutamate and [2-13C]glycine and [13C]bicarbonate in Prosthecochloris aestaurii, were analysed. The isotope in the glutamate was specifically incorporated into the eight carbon atoms in the tetrapyrrole macrocycle derived from the C-5 of 5-aminolevulinic acid, while no specific enrichment of these eight carbon atoms was observed in the spectrum of the pigment formed in the presence of [2-13C]glycine. These labelling patterns provide evidence for the operation of the C5 pathway of 5-aminolevulinic acid synthesis for bacteriochlorophyll c formation in the bacterium. The labelling of bacteriochlorophyll c by [13C]bicarbonate is consistent with its formation from 5-[1,4,5-13C]aminolevulinic acid formed by the C5 pathway from [1,2,5-13C]glutamic acid. It is proposed that this glutamate is the transamination product of 2-[1,2,5-13C]oxoglutaric acid, arising by carboxylation of [1,4-13C]succinyl-CoA with 13CO2 catalysed by 2-oxoglutaric acid synthase activity, and that the labelled succinyl-CoA is, in turn, derived by the fixation of 13CO2 by the reductive tricarboxylic acid cycle. The 13C chemical shifts of two sp2 quaternary carbons of bacteriopheophorbide c methyl ester (C-2 and C-4) were reassigned.  相似文献   
84.
Time courses of photosynthetic 14CO2 fixation and its simulationare presented for Chlorella cells grown under low CO2 concentration(low-CO2 cells) and subsequently exposed to 0.2 mM NaH14CO3or 130 ppm 14CO2 in the presence or absence of carbonic anhydrase(CA) in the suspending medium. It was shown that Chlorella cells utilized only free CO2 whenNaHCO3 was given in the presence or absence of CA, or when CO2was bubbled in the absence of CA. However, the present simulationindicated that both CO3 and HCO3 were utilized when CO2was given in the presence of CA. Based on these results, weconcluded that 1) Chlorella cells absorb only free CO2 and 2)this gas is provided to algal cells in two ways, i.e., by directand indirect CO2 supply. Usually, the dissolved CO2 is directlyutilized by the algal cells (direct supply of CO2). However,when the concentration of dissolved CO2 is extremely low andwhen there is CA, CO2 reconverted from HCO3 is also utilizedby Chlorella cells (indirect supply of CO2). The utilizationof HCO3 indicated by the above simulation was explainedby the indirect supply of CO2. We further assumed that the indirectsupply of CO2 to ribulose 1,5-bisphosphate carboxylase occursmainly in the chloroplasts of low-CO2 cells containing highCA. Thus, under low CO2 concentrations, low-CO2 cells can carryout more efficient CO2 fixation than high-CO2 cells, resultingin the lower apparent Km(CO2). 3Department of Biology, Faculty of Science, Niigata University,Niigata, Japan. (Received April 2, 1980; )  相似文献   
85.
The rates of photosynthetic 14CO2 fixation by Chlorella vulgarisllh, grown under high CO2, were determined between 4 to 37°Cwith air containing from 300 to 13,000 ppm 14CO2. When the CO2level was increased, both the rate of photosynthesis and theoptimum temperature for maximum photosynthesis increased. Themaximum photosynthetic rate was reached at 12°C with 300ppm l4CO2. Among the photosynthetic products fromed at 300 ppm 14CO2, glycolatedecreased greatly when the temperature was raised from 20 to30°C. At 3,000 ppm 14CO2 an insignificant amount of glycolatewas formed at all temperatures, whereas 14C-incorporation intothe insoluble fraction, sucrose, and the lipid fraction wassignificantly higher than at 300 ppm 14CO2. The 14C in sucrosewas greatly increased and the radioactivity in the insolublefraction decreased when the temperature was raised from 28 to36°C. (Received April 8, 1980; )  相似文献   
86.
Sulfolipid metabolism in chlorella   总被引:1,自引:0,他引:1       下载免费PDF全文
When S-deficient cells of Chlorella cllipsoidea were incubated in radio-sulfate in light or in aerobic darkness for 1 hour, equal amounts of radioactivity were found in sulfolipid and glutathione but none was detected in sulfoquinovosyl glycerol which is one of the major S-compounds in this alga. No assimilation of radiosulfate was observed under anaerobic darkness.

To elucidate the function of sulfolipid in algal cells uniformly 35S-labeled Chlorella cells were transferred to S-deficient culture medium or unlabeled normal culture medium and the changes of radioactivity in sulfolipid and the related compounds were followed. A) On incubating 35S-labeled algal cells in S-deficient medium under photosynthetic conditions, the amounts of radioactivity in sulfate, sulfoquinovosyl glycerol and sulfolipid decreased rapidly. B) When 35S-labeled cells were cultured photoautotrophically in unlabeled medium, no decrease of radioactivity was observed in sulfoquinovosyl glycerol and sulfolipid. C) A decrease of 35S-sulfolipid and an increase of 35S-sulfoquinovosyl glycerol were observed when the uniformly 35S-labeled algal cells were illuminated in CO2-free air.

When S-deficient Chlorella cells were incubated in 35S-sulfolipid under photosynthetic conditions, significant radioactivity was found in the insoluble fraction of the cells. A similar result was observed when normal Chlorella cells were incubated in 14C-sulfolipid and CO2-free air.

It is inferred from these observations that sulfolipid is a reservoir of sulfur and carbon compounds.

In order to ascertain if the sulfolipid is involved in the mechanism of photosynthetic oxygen evolution, the rate of photosynthesis was measured during the incubation of 35S-labeled cells in a S-deficient medium. Parallelism was not observed between the rate of photosynthetic activity and the decrease of sulfolipid.

  相似文献   
87.
Summary In a temperature-sensitive, high CO2-requiring mutant of Synechococcus sp. PCC7942, the ability to fix intracellularly accumulated inorganic carbon was severely impaired at non-permissive temperature (41° C). In contrast, inorganic carbon uptake and ribulose-1,5-bisphosphate carboxylase activity in the mutant were comparable to the respective values obtained with the wild-type strain. The mutant was transformed to the wild-type phenotype (ability to form colonies at non-permissive temperature under ordinary air) with the genomic DNA of the wild-type strain. A clone containing a 36 kb genomic DNA fragment of the wild-type strain complemented the mutant phenotype. The complementing activity region was associated with internal 17 kb SmaI, 15 kb HindIII, 3.8 kb BamHI and 0.87 kb Pstl fragments. These 4 fragments overlapped only in a 0.4 kb HindIII-PstI region. In the transformants obtained with total genomic DNA or a plasmid containing the 3.8 kb BamHI fragment, the ability to fix intracellular inorganic carbon was restored. Southern hybridization and partial nucleotide sequence analysis indicated that the cloned genomic region was located approximately 20 kb downstream from the structural genes for subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase. The cloned region was transcribed into a 0.5 kb mRNA. These results indicate that the cloned genomic region of Synechococcus sp. PCC7942 is involved in the efficient utilization of intracellular inorganic carbon for photosynthesis.  相似文献   
88.
Cutaneous lipid peroxide levels and superoxide dismutase (SOD) activity in non-aged and aged guinea pigs were measured between 15 min and 7 days after experimental infliction of burns. Skin burns on non-aged and aged patients were also subjected to these assays. In non-aged guinea pig skin burns, lipid peroxide levels increased from 24 hr to the fourth day after the burn infliction, while SOD activity did not increase but showed a slight decrease 12 hr and 24 hr post-burn. On the other hand, while the aged group showed a more increase in skin lipid peroxide levels compared to that seen in non-aged mice, skin SOD activity began to decrease from 30 min post-burn, the maximum decrease being reached on the second day. The activity did not return to normal by the 7th day. In non-aged patients skin burns showed increases in both lipid peroxide levels and SOD activity, while in aged patients, though they showed a marked increase in lipid peroxide levels, SOD activity remained unchanged. The present study indicated that, although in our recent study, skin SOD activity of healthy elderly people was found to be comparable to that in non-aged individuals, the capacity for induction of SOD activity under oxygen stress differed with age in both guinea pig and human burn sufferers. Furthermore, this induction capacity seemed to vary from species to species.  相似文献   
89.
When Escherichiacoli is growing in steady state with doubling times of 40 minutes or 20 hours, during shift up conditions, or under conditions of relaxed control of RNA synthesis, all rRNA cistrons are transcribed equally.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号