首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7252篇
  免费   542篇
  国内免费   1篇
  2021年   54篇
  2019年   57篇
  2018年   71篇
  2017年   52篇
  2016年   77篇
  2015年   126篇
  2014年   179篇
  2013年   504篇
  2012年   276篇
  2011年   269篇
  2010年   175篇
  2009年   171篇
  2008年   271篇
  2007年   325篇
  2006年   292篇
  2005年   298篇
  2004年   319篇
  2003年   265篇
  2002年   310篇
  2001年   282篇
  2000年   327篇
  1999年   276篇
  1998年   92篇
  1997年   76篇
  1996年   54篇
  1995年   82篇
  1994年   68篇
  1993年   65篇
  1992年   178篇
  1991年   227篇
  1990年   173篇
  1989年   167篇
  1988年   192篇
  1987年   164篇
  1986年   143篇
  1985年   135篇
  1984年   105篇
  1983年   82篇
  1982年   61篇
  1981年   70篇
  1980年   55篇
  1979年   75篇
  1978年   70篇
  1977年   47篇
  1976年   42篇
  1975年   44篇
  1974年   41篇
  1973年   45篇
  1972年   38篇
  1971年   33篇
排序方式: 共有7795条查询结果,搜索用时 46 毫秒
991.
992.
993.
994.
In order to investigate the influence of cholesterol (Ch) and monosialoganglioside (GM1) on the release and subsequent deposition/aggregation of amyloid beta peptide (Abeta)-(1-40) and Abeta-(1-42), we have examined Abeta peptide model membrane interactions by circular dichroism, turbidity measurements, and transmission electron microscopy (TEM). Model liposomes containing Abeta peptide and a lipid mixture composition similar to that found in the cerebral cortex membranes (CCM-lipid) have been prepared. In all, four Abeta-containing liposomes were investigated: CCM-lipid; liposomes with no GM1 (GM1-free lipid); those with no cholesterol (Ch-free lipid); liposomes with neither cholesterol nor GM1 (Ch-GM1-free lipid). In CCM liposomes, Abeta was rapidly released from membranes to form a well defined fibril structure. However, for the GM1-free lipid, Abeta was first released to yield a fibril structure about the membrane surface, then the membrane became disrupted resulting in the formation of small vesicles. In Ch-free lipid, a fibril structure with a phospholipid membrane-like shadow formed, but this differed from the well defined fibril structure seen for CCM-lipid. In Ch-GM1-free lipid, no fibril structure formed, possibly because of membrane solubilization by Abeta. The absence of fibril structure was noted at physiological extracellular pH (7.4) and also at liposomal/endosomal pH (5.5). Our results suggest a possible role for both Ch and GM1 in the membrane release of Abeta from brain lipid bilayers.  相似文献   
995.
By screening cDNA expression libraries derived from fresh leukemic cells of adult T-cell leukemia for the potential to transform murine fibroblasts, NIH3T3, we have identified a novel transforming gene, designated Tgat. Expression of Tgat in NIH3T3 resulted in the loss of contact inhibition, increase of saturation density, anchorage-independent growth in a semisolid medium, tumorigenicity in nude mice, and increased invasiveness. Sequence comparison revealed that an alternative RNA splicing of the Trio gene was involved in the generation of Tgat. The Tgat cDNA encoded a protein product consisting of the Rho-guanosine nucleotide exchange factor (GEF) domain of a multifunctional protein, TRIO, and a unique C-terminal 15-amino acid sequence, which were derived from the exons 38-46 of the Trio gene and a novel exon located downstream of its last exon (exon 58), respectively. A Tgat mutant cDNA lacking the C-terminal coding region preserved Rho-GEF activity but lost the transforming potential, indicating an indispensable role of the unique sequence. On the other hand, treatment of Tgat-transformed NIH3T3 cells with Y-27632, a pharmacological inhibitor of Rho-associated kinase, abrogated their transforming phenotypes, suggesting the coinvolvement of Rho-GEF activity. Thus, alternative RNA splicing, resulting in the fusion protein with the Rho-GEF domain and the unique 15 amino acids, is the mechanism generating the novel oncogene, Tgat.  相似文献   
996.
Scavenger receptor expressed by endothelial cells I (SREC-I) is a novel endocytic receptor for acetylated low density lipoprotein (LDL). Here we show that SREC-I is expressed in a wide variety of tissues, including macrophages and aortas. Lipopolysaccharide (LPS) robustly stimulated the expression of SREC-I in macrophages. In an initial attempt to clarify the role of SREC-I in the uptake of modified lipoproteins as well as in the development of atherosclerosis, we generated mice with a targeted disruption of the SREC-I gene by homologous recombination in embryonic stem cells. To exclude the overwhelming effect of the type A scavenger receptor (SR-A) on the uptake of Ac-LDL, we further generated mice lacking both SR-A and SREC-I (SR-A(-/-);SREC-I(-/-)) by cross-breeding and compared the uptake and degradation of Ac-LDL in the isolated macrophages. The contribution of SR-A and SREC-I to the overall degradation of Ac-LDL was 85 and 5%, respectively, in a non-stimulated condition. LPS increased the uptake and degradation of Ac-LDL by 1.8-fold. In this condition, the contribution of SR-A and SREC-I to the overall degradation of Ac-LDL was 90 and 6%, respectively. LPS increased the absolute contribution of SR-A and SREC-I by 1.9- and 2.3-fold, respectively. On the other hand, LPS decreased the absolute contribution of other pathways by 31%. Consistently, LPS did not increase the expression of other members of the scavenger receptor family such as CD36. In conclusion, SREC-I serves as a major endocytic receptor for Ac-LDL in LPS-stimulated macrophages lacking SR-A, suggesting that it has a key role in the development of atherosclerosis in concert with SR-A.  相似文献   
997.
We have shown that over-sulfated chondroitin sulfate/dermatan sulfate (CS/DS) chains from various marine organisms exhibit growth factor binding activities and neurite outgrowth-promoting activities in embryonic mouse hippocampal neurons in vitro. In this study we demonstrated that CS/DS hybrid chains purified from embryonic pig brain displayed marked neuritogenic activity and growth factor binding activities toward fibroblast growth factor 2 (FGF2), FGF10, FGF18, pleiotrophin, and midkine, all of which exhibit neuroregulatory activities in the brain. In contrast, the CS/DS preparation from adult pig brain showed considerably less activity to bind these growth factors and no neuritogenic activity. Structural analysis indicated that the average size of the CS/DS chains was similar (40 kDa) between these two preparations, but the disaccharide compositions differed considerably, with a significant proportion of l-iduronic acid (IdoUA)-containing disaccharides (8 approximately 9%) in the CS/DS chains from embryos but not in those from adults (<1%). Interestingly, both neurite outgrowth-promoting activity and growth factor binding activities of the CS/DS chains from embryos were abolished by digestion not only with chondroitinase ABC but also with chondroitinase B, suggesting that the IdoUA-containing motifs are essential for these activities. These findings imply that the temporal expression of CS/DS hybrid structures containing both GlcUA and IdoUA and binding activities toward various growth factors play important roles in neurogenesis in the early stages of the development of the brain.  相似文献   
998.
"Catch" is the state where some invertebrate muscles sustain high tension for long periods at low ATP hydrolysis rates. Physiological studies using muscle fibers have not yet fully provided the details of the initiation process of the catch state. The process was extensively studied by using an in vitro reconstitution assay with several phosphatase inhibitors. Actin filaments bound to thick filaments pretreated with the soluble protein fraction of muscle homogenate and Ca2+ (catch treatment) in the presence of MgATP at a low free Ca2+ concentration (the catch state). Catch treatment with > 50 microm okadaic acid, > 1 microm microcystin LR, 1 microm cyclosporin A, 1 microm FK506, or 0.2 mm calcineurin autoinhibitory peptide fragment produced almost no binding of the actin filaments, indicating protein phosphatase 2B (PP2B) was involved. Use of bovine calcineurin (PP2B) and its activator calmodulin instead of the soluble protein fraction initiated the catch state, indicating that only PP2B and calmodulin in the soluble protein fraction are essential for the initiation process. The initiation was reproduced with purified actin, myosin, twitchin, PP2B, and calmodulin. 32P autoradiography showed that only twitchin was dephosphorylated during the catch treatment with either the soluble protein fraction or bovine calcineurin and calmodulin. These results indicate that PP2B directly dephosphorylates twitchin and initiates the catch state and that no other component is required for the initiation process of the catch state.  相似文献   
999.
We investigated the energetic costs of quadrupedal and bipedal walking in two Japanese macaques. The subjects were engaged in traditional bipedal performance for years, and are extremely adept bipeds. The experiment was conducted in an airtight chamber with a gas analyzer. The subjects walked quadrupedally and bipedally at fixed velocities (<5 km/hr) on a treadmill in the chamber for 2.5-6 min. We estimated energy consumption from carbon dioxide (CO2) production. While walking bipedally, energetic expenditure increased by 30% relative to quadrupedalism in one subject, and by 20% in another younger subject. Energetic costs increased linearly with velocity in quadrupedalism and bipedalism, with bipedal/quadrupedal ratios remaining almost constant. Our experiments were relatively short in duration, and thus the observed locomotor costs may include presteady-state high values. However, there was no difference in experimental duration between bipedal and quadrupedal trials. Thus, the issue of steady state cannot cancel the difference in energetic costs. Furthermore, we observed that switching of locomotor mode (quadrupedalism to bipedalism) during a session resulted in a significant increase of CO2 production. Taylor and Rowntree ([1973] Science 179:186-187) noted that the energetic costs for bipedal and quadrupedal walking were the same in chimpanzees and capuchin monkeys. Although the reason for this inconsistency is not clear, species-specific differences should be considered regarding bipedal locomotor energetics among nonhuman primates. Extra costs for bipedalism may not be great in these macaques. Indeed, it is known that suspensory locomotion in Ateles consumes 1.3-1.4 times as much energy relative to quadrupedal progression. This excess ratio surpasses the bipedal/quadrupedal energetic ratios in these macaques.  相似文献   
1000.
In order to investigate the microtubule-associated intracellular trafficking of the NH2-terminal cellular prion protein (PrPC) fragment [Biochem. Biophys. Res. Commun. 313 (2004) 818], we performed a real-time imaging of fluorescent PrPC (GFP-PrPC) in living cells. Such GFP-PrPC exhibited an anterograde movement towards the direction of plasma membranes at a speed of 140-180 nm/s, and a retrograde movement inwardly at a speed of 1.0-1.2 microm/s. The anterograde and retrograde movements of GFP-PrPC were blocked by a kinesin family inhibitor (AMP-PNP) and a dynein family inhibitor (vanadate), respectively. Furthermore, anti-kinesin antibody (alpha-kinesin) blocked its anterograde motility, whereas anti-dynein antibody (alpha-dynein) blocked its retrograde motility. These data suggested the kinesin family-driven anterograde and the dynein-driven retrograde movements of GFP-PrPC. Mapping of the interacting domains of PrPC identified amino acid residues indispensable for interactions with kinesin family: NH2-terminal mouse (Mo) residues 53-91 and dynein: NH2-terminal Mo residues 23-33, respectively. Our findings argue that the discrete N-terminal amino acid residues are indispensable for the anterograde and retrograde intracellular movements of PrPC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号