首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8287篇
  免费   531篇
  国内免费   4篇
  8822篇
  2023年   24篇
  2022年   105篇
  2021年   159篇
  2020年   88篇
  2019年   120篇
  2018年   166篇
  2017年   157篇
  2016年   227篇
  2015年   430篇
  2014年   436篇
  2013年   520篇
  2012年   731篇
  2011年   630篇
  2010年   400篇
  2009年   372篇
  2008年   491篇
  2007年   515篇
  2006年   459篇
  2005年   404篇
  2004年   387篇
  2003年   330篇
  2002年   289篇
  2001年   250篇
  2000年   233篇
  1999年   166篇
  1998年   64篇
  1997年   54篇
  1996年   34篇
  1995年   37篇
  1994年   22篇
  1993年   22篇
  1992年   41篇
  1991年   49篇
  1990年   39篇
  1989年   47篇
  1988年   38篇
  1987年   26篇
  1986年   27篇
  1985年   31篇
  1984年   22篇
  1983年   17篇
  1980年   9篇
  1979年   12篇
  1978年   14篇
  1977年   12篇
  1976年   9篇
  1974年   13篇
  1973年   15篇
  1972年   11篇
  1971年   9篇
排序方式: 共有8822条查询结果,搜索用时 0 毫秒
101.

Background

Protein-protein interactions (PPIs) play a key role in understanding the mechanisms of cellular processes. The availability of interactome data has catalyzed the development of computational approaches to elucidate functional behaviors of proteins on a system level. Gene Ontology (GO) and its annotations are a significant resource for functional characterization of proteins. Because of wide coverage, GO data have often been adopted as a benchmark for protein function prediction on the genomic scale.

Results

We propose a computational approach, called M-Finder, for functional association pattern mining. This method employs semantic analytics to integrate the genome-wide PPIs with GO data. We also introduce an interactive web application tool that visualizes a functional association network linked to a protein specified by a user. The proposed approach comprises two major components. First, the PPIs that have been generated by high-throughput methods are weighted in terms of their functional consistency using GO and its annotations. We assess two advanced semantic similarity metrics which quantify the functional association level of each interacting protein pair. We demonstrate that these measures outperform the other existing methods by evaluating their agreement to other biological features, such as sequence similarity, the presence of common Pfam domains, and core PPIs. Second, the information flow-based algorithm is employed to discover a set of proteins functionally associated with the protein in a query and their links efficiently. This algorithm reconstructs a functional association network of the query protein. The output network size can be flexibly determined by parameters.

Conclusions

M-Finder provides a useful framework to investigate functional association patterns with any protein. This software will also allow users to perform further systematic analysis of a set of proteins for any specific function. It is available online at http://bionet.ecs.baylor.edu/mfinder
  相似文献   
102.
A series of naphthoquinone-benzothiazole conjugates were synthesized as algicides, and their efficacies against harmful algal blooming species, such as Chattonella marina, Heterosigma akashiwo and Cochlodinium polykrikoides, were examined. The introduction of substituted benzothiazole at the C2 position of 1,4-naphthoquinone (compounds 19) resulted in higher algicidal activity against C. polykrikoides than the C6 conjugates (compounds 1020). On the other hand, of the C6 conjugates, compounds 11 and 12 exhibited better algicidal activity against H. akashiwo, C. marina, and C. polykrikoides than the C2 conjugates. Further structure-activity analysis indicated that a replacement of the methoxy groups with hydroxyl groups (compounds 2126) decreased the algicidal activity significantly. Among the various synthetic naphthoquinonebezothiazole conjugates tested, compound 12 was found to affect the most significant decrease in the level of C. polykrikoides growth, with an IC50 of 0.19 μM. Compound 11 was found to be the most potent inhibitor against H. akashiwo and C. polykrikoides, with IC50 values of 0.32 and 0.12 μM, respectively. Overall, these results highlight a possible method for controlling and inhibiting red tide forming algae using NQ derivatives.  相似文献   
103.
Pungency in pepper (Capsicum annuum L.) has unique characteristics due to the alkaloid compound group, capsaicinoids, which includes capsaicin. Although capsaicinoids have been proved to have pharmacological and physiological effects on human health, the application of capsaicinoids has been limited because of their pungency. Capsinoids found in non-pungent peppers share closely related structures with capsaicinoids and show similar biological effects. Previous studies demonstrated that mutations in the p-AMT gene were related to the production of capsinoids; however, the pathway of capsinoid synthesis has not yet been fully elucidated. In this study, we performed genetic analysis to determine the mechanism of capsinoid synthesis using a F6 recombinant inbred line population. In this population, the presence/absence of capsinoids co-segregated with the genotype of the Pun1 locus, without exception. In addition, we screened the patterns of capsinoid synthesis and the correlation between the Pun1 locus and capsinoid synthesis in p-AMT mutant accessions. In Capsicum germplasms, we selected amino-acid-substituted mutants in the PLP binding domain of the p-AMT gene. Capsinoids were not synthesized with the recessive pun1 gene, regardless of the p-AMT genotype, and no relationship was found between p-AMT mutant type and capsinoid content. We concluded that the Pun1 gene, which is responsible for capsaicinoid synthesis, also controls capsinoid synthesis.  相似文献   
104.
Green rice leafhopper (GRH, Nephotettix cincticeps Uhler) is one of the insect pests that damage cultivated rice in East Asia. GRH also transmits viruses such as rice dwarf virus. The mortality of GRH nymphs is high in rice cultivar Shingwang, indicating that Shingwang is resistant to GRH. Genetic analyses were performed to map GRH resistance in Shingwang using F2 and F3 populations derived from a cross between a GRH-resistant near-isogenic line (NIL-IS60) from Shingwang and recurrent parent Ilpum. Resistance to GRH in Shingwang was found to be controlled by a single dominant gene (Grh1) mapped within an approximately 670-kb region between 8.10 and 8.77 Mb on the short arm of chromosome 5. Genotypes with three simple sequence repeat markers (RM18166, RM516, and RM18171) and one indel marker (Indel 15040) co-segregated with GRH resistance controlled by the Grh1 locus. A detailed map of the Grh1 locus will facilitate marker-assisted selection of resistance to GRH in rice breeding.  相似文献   
105.
106.
Background: Colorectal carcinogenesis is believed to be a multi-stage process that originates with a localized adenoma, which linearly progresses to an intra-mucosal carcinoma, to an invasive lesion, and finally to metastatic cancer. This progression model is supported by tissue culture and animal model studies, but it is difficult to reconcile with several well-established observations, principally among these are that up to 25% of early stage (Stage I/II), node-negative colorectal cancer (CRC) develop distant metastasis, and that circulating CRC cells are undetectable in peripheral blood samples of up to 50% of patients with confirmed metastasis, but more than 30% of patients with no detectable metastasis exhibit such cells. The mechanism responsible for this diverse behavior is unknown, and there are no effective means to identify patients with pending, or who are at high risk for, developing metastatic CRC.Novel findings: Our previous studies of human breast and prostate cancer have shown that cancer invasion arises from the convergence of a tissue injury, the innate immune response to that injury, and the presence of tumor stem cells within tumor capsules at the site of the injury. Focal degeneration of a capsule due to age or disease attracts lymphocyte infiltration that degrades the degenerating capsules resulting in the formation of a focal disruption in the capsule, which selectively favors proliferating or “budding” of the underlying tumor stem cells. Our recent studies suggest that lymphocyte infiltration also triggers metastasis by disrupting the intercellular junctions and surface adhesion molecules within the proliferating cell buds causing their dissociation. Then, lymphocytes and tumor cells are conjoined through membrane fusion to form tumor-lymphocyte chimeras (TLCs) that allows the tumor stem cell to avail itself of the lymphocyte''s natural ability to migrate and breach cell barriers in order to intravasate and to travel to distant organs. Our most recent studies of human CRC have detected nearly identical focal capsule disruptions, lymphocyte infiltration, budding cells, and the formation of TLCs. Our studies have further shown that age- and type-matched node-positive and -negative CRC have a significantly different morphological and immunohistochemical profile and that the majority of lymphatic ducts with disseminated cells are located within the mucosa adjacent to morphologically normal appearing epithelial structures that express a stem cell-related marker.New hypothesis: Based on these findings and the growth patterns of budding cells revealed by double immunohistochemistry, we further hypothesize that metastatic spread is an early event of carcinogenesis and that budding cells overlying focal capsule disruptions represent invasion- and metastasis-initiating cells that follow one of four pathways to progress: (1) to undergo extensive in situ proliferation leading to the formation of tumor nests that subsequently invade the submucosa, (2) to migrate with associated lymphocytes functioning as “seeds” to grow in new sites, (3) to migrate and intravasate into pre-existing vascular structures by forming TLCs, or (4) to intravasate into vascular structures that are generated by the budding cells themselves. We also propose that only node-positive cases harbor stem cells with the potential for multi-lineage differentiation and unique surface markers that permit intravasation.  相似文献   
107.

Objective

This study was designed to investigate the revised and short version of the smartphone addiction scale and the proof of its validity in adolescents. In addition, it suggested cutting off the values by gender in order to determine smartphone addiction and elaborate the characteristics of smartphone usage in adolescents.

Method

A set of questionnaires were provided to a total of 540 selected participants from April to May of 2013. The participants consisted of 343 boys and 197 girls, and their average age was 14.5 years old. The content validity was performed on a selection of shortened items, while an internal-consistency test was conducted for the verification of its reliability. The concurrent validity was confirmed using SAS, SAPS and KS-scale. Receiver operating characteristics analysis was conducted to suggest cut-off.

Results

The 10 final questions were selected using content validity. The internal consistency and concurrent validity of SAS were verified with a Cronbach''s alpha of 0.911. The SAS-SV was significantly correlated with the SAS, SAPS and KS-scale. The SAS-SV scores of gender (p<.001) and self-evaluation of smartphone addiction (p<.001) showed significant difference. The ROC analysis results showed an area under a curve (AUC) value of 0.963(0.888–1.000), a cut-off value of 31, sensitivity value of 0.867 and specificity value of 0.893 in boys while an AUC value of 0.947(0.887–1.000), a cut-off value of 33, sensitivity value of 0.875, and a specificity value of 0.886 in girls.

Conclusions

The SAS-SV showed good reliability and validity for the assessment of smartphone addiction. The smartphone addiction scale short version, which was developed and validated in this study, could be used efficiently for the evaluation of smartphone addiction in community and research areas.  相似文献   
108.
Protein tyrosine phosphatases play key roles in a diverse range of cellular processes such as differentiation, cell proliferation, apoptosis, immunological signaling, and cytoskeletal function. Protein tyrosine phosphatase non-receptor type 7 (PTPN7), a member of the phosphatase family, specifically inactivates mitogen-activated protein kinases (MAPKs). Here, we report that PTPN7 acts as a regulator of pro-inflammatory TNF-α production in RAW 264.7 cells that are stimulated with lipopolysaccharide (LPS) that acts as an endotoxin and elicits strong immune responses in animals. Stimulation of RAW 264.7 cells with LPS leads to a transient decrease in the levels of PTPN7 mRNA and protein. The overexpression of PTPN7 inhibits LPS-stimulated production of TNF-α. In addition, small interfering RNA (siRNA) analysis showed that knock-down of PTPN7 in RAW 264.7 cells increased TNF-α production. PTPN7 has a negative regulatory function to extracellular signal regulated kinase 1/2 (ERK1/2) and p38 that increase LPS-induced TNF-α production in macrophages. Thus, our data presents PTPN7 as a negative regulator of TNF-α expression and the inflammatory response in macrophages.  相似文献   
109.
Bone remodeling, the selective deposition and resorption of bone, is an important cause of tooth eruption. During tooth eruption, reduced enamel epithelia of the enamel organ interact with follicle cells to recruit osteoclasts for bone remodeling. However, little is known about the relationship between cellular activity of reduced enamel epithelium and bone resorption during tooth eruption. The purpose of this study was to investigate the effect of apoptosis in reduced enamel epithelium on osteoclastogenesis and its implications for bone resorption. We have analyzed erupting mandibular molars in mice by TdT-mediated dUTP-biotin nick end labeling assay, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemistry. TRAP-positive cells were detected in the osteoclasts near both the buccal and lingual sides of tooth socket at postnatal day 0 (PN0). They significantly increased until PN3 and decreased thereafter as the tooth erupted. Interestingly, apoptosis was barely detected in the reduced enamel epithelium at PN3 but clearly at PN7. A few apoptotic cells were also investigated within the dental follicle surrounding developing tooth at PN7 and PN10. We observed apoptotic osteoblast-lineage cells along the inner margin of alveolar bone facing the buccal cusp and at the base of the bony crypt at PN3 decreasing until PN10. In contrast, expression levels of bone sialoprotein increased at PN10 compared to levels at PN3. These results suggest that apoptosis of reduced enamel epithelium resulted in a reduction of osteoclast activity and of bone resorption mediated by dental follicle during tooth eruption.  相似文献   
110.
Vascular calcification is an advanced feature of atherosclerosis for which no effective therapy is available. To investigate the modulation or reversal of calcification, we identified calcifying progenitor cells and investigated their calcifying/decalcifying potentials. Cells from the aortas of mice were sorted into four groups using Sca-1 and PDGFRα markers. Sca-1+ (Sca-1+/PDGFRα+ and Sca-1+/PDGFRα) progenitor cells exhibited greater osteoblastic differentiation potentials than Sca-1 (Sca-1/PDGFRα+ and Sca-1/PDGFRα) progenitor cells. Among Sca-1+ progenitor populations, Sca-1+/PDGFRα cells possessed bidirectional differentiation potentials towards both osteoblastic and osteoclastic lineages, whereas Sca-1+/PDGFRα+ cells differentiated into an osteoblastic lineage unidirectionally. When treated with a peroxisome proliferator activated receptor γ (PPARγ) agonist, Sca-1+/PDGFRα cells preferentially differentiated into osteoclast-like cells. Sca-1+ progenitor cells in the artery originated from the bone marrow (BM) and could be clonally expanded. Vessel-resident BM-derived Sca-1+ calcifying progenitor cells displayed nonhematopoietic, mesenchymal characteristics. To evaluate the modulation of in vivo calcification, we established models of ectopic and atherosclerotic calcification. Computed tomography indicated that Sca-1+ progenitor cells increased the volume and calcium scores of ectopic calcification. However, Sca-1+/PDGFRα cells treated with a PPARγ agonist decreased bone formation 2-fold compared with untreated cells. Systemic infusion of Sca-1+/PDGFRα cells into Apoe−/− mice increased the severity of calcified atherosclerotic plaques. However, Sca-1+/PDGFRα cells in which PPARγ was activated displayed markedly decreased plaque severity. Immunofluorescent staining indicated that Sca-1+/PDGFRα cells mainly expressed osteocalcin; however, activation of PPARγ triggered receptor activator for nuclear factor-κB (RANK) expression, indicating their bidirectional fate in vivo. These findings suggest that a subtype of BM-derived and vessel-resident progenitor cells offer a therapeutic target for the prevention of vascular calcification and that PPARγ activation may be an option to reverse calcification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号