首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   9篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1994年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1969年   2篇
  1967年   1篇
  1966年   2篇
  1965年   2篇
排序方式: 共有74条查询结果,搜索用时 126 毫秒
61.
Health depends on the diet and a vegetal diet promotes health by providing fibres, vitamins and diverse metabolites. Remarkably, plants may also provide microbes. Fungi and bacteria that reside inside plant tissues (endophytes) seem better protected to survive digestion; thus, we investigated the reported evidence on the endophytic origin of some members of the gut microbiota in animals such as panda, koala, rabbits and tortoises and several herbivore insects. Data examined here showed that some members of the herbivore gut microbiota are common plant microbes, which derived to become stable microbiota in some cases. Endophytes may contribute to plant fibre or antimetabolite degradation and synthesis of metabolites with the plethora of enzymatic activities that they display; some may have practical applications, for example, Lactobacillus plantarum found in the intestinal tract, plants and in fermented food is used as a probiotic that may defend animals against bacterial and viral infections as other endophytic-enteric bacteria do. Clostridium that is an endophyte and a gut bacterium has remarkable capabilities to degrade cellulose by having cellulosomes that may be considered the most efficient nanomachines. Cellulose degradation is a challenge in animal digestion and for biofuel production. Other endophytic-enteric bacteria may have cellulases, pectinases, xylanases, tannases, proteases, nitrogenases and other enzymatic capabilities that may be attractive for biotechnological developments, indeed many endophytes are used to promote plant growth. Here, a cycle of endophytic-enteric-soil-endophytic microbes is proposed which has relevance for health and comprises the fate of animal faeces as natural microbial inoculants for plants that constitute bacterial sources for animal guts.  相似文献   
62.
The existence of a synchronizing system generating theta (RSA) activity of an average frequency of 4 Hz has been demonstrated in the brain of the turtle Testudo Graeca. Three brain structures probably participate in the activity--the septum, amygdala and hippocampus. The septal region seems to play a leading role in this complex--lesions in this region abolished the generation of theta activity in 71% of experiments. This synchronizing system is functionally coupled with the olfactory generator of electrographic respiratory response (ERR), which is brought into activity by nasal air flow. This coupling can play a role in genesis of epileptic electrographic activities not only in the turtle, but also in phylogenetically higher species.  相似文献   
63.
64.
65.
66.
The conversion of formaldehyde to methylcoenzyme M in cell-free extracts of Methanobacterium thermoautotrophicum was stimulated up to 10-fold by catalytic amounts of the heterodisulfide (CoM-S-S-HTP) of coenzyme M and 7-mercaptoheptanoylthreonine phosphate. The stimulation required the additional presence of ATP, also in catalytic concentrations. ATP and CoM-S-S-HTP were mutually stimulatory on the methylcoenzyme M formation and it was concluded that the compounds were both involved in the reductive activation of the methyltetrahydromethanopterin: coenzyme M methyltransferase. Micromolar concentrations of benzyl viologen or cyanocobalamin inhibited the formaldehyde conversion; these compounds, however, strongly stimulated the reduction of CoM-S-S-HTP. The results described here closely resemble observations made on the activation and reduction of CO2 to formylmethanofuran indicating that this step and the reductive activation of the methyltransferase are controlled by some common mechanism.Abbreviations HS-CoM Coenzyme M, 2-mercaptoethanesulfonate - CH3S-CoM methylcoenzyme M, 2-(methylthio)ethanesulfonate - H4MPT 5,6,7,8-tetrahydromethanopterin - MFR methanofuran - HS-HTP 7-mercaptoheptanoylthreonine phosphate - CoM-S-S-HTP the heterodisulfide of HS-CoM and HS-HTP - BES 2-bromoethanesulfonate - TES N-tris(hydroxymethyl)methyl-2-aminoethanesulfonate - CN-Cbl cyanocobalamin - HO-Cbl hydroxycobalamin - HBI 5-hydroxybenzimidazole - DMBI 5,6-dimethylbenzimidazole  相似文献   
67.
The antiepileptic effect of dexphenmetrazine (DP) and acetyldexphenmetrazine (ADP) was tested on audiogenic seizures in a 100% susceptible strain of mice. DP had no antiepileptic effect, however, it markedly suppressed the postparoxysmal motor inhibition. ADP had a distinct anticonvulsive effect--it suppressed the convulsive component of the seizure, leaving its running component unaffected. The results are compared with the effect of both drugs on electrographic epileptic phenomena in the turtle brain (Servít and Strejcková 1976).  相似文献   
68.
The effect of acetyldexphenmetrazine (ADP) and dexphenmetrazine (DP) on normal and epileptic electrographic activities in the cortical and thalamic structures of the turtle brain were studied in curarized and artificially ventilated animals. Both drugs almost exclusively influenced cortical activities. The effect of low doses of ADP and DP was similar--they desynchronized cortical activity and suppressed the activity of a cortical penicillin focus. They also elevated the cortical response to optic stimuli. Higher doses of ADP continued to suppress both normal and epileptic cortical activities. Higher doses of DP had a two phase effect with enhancement of epileptic activity in the first phase. Continuous trains of theta activity appeared after low doses of ADP and very often after both low and high doses of DP. The findings are discussed in terms of comparative physiology of the brain.  相似文献   
69.
The activating effect of deep oral breathing (with the nose closed) and nasal hyperventilation (with mouth closed) was examined in 62 patients with three different kinds of epileptic EEG abnormalities: unilateral localized temporal (fronto-temporal, occipito-temporal) abnormalities - group F, bilateral episodic theta-delta abnormalities - group TH, and bilaterally synchronous spike and wave abnormalities - group SW. Nasal hyperventilation was much more effective in group F and TH. Its effect was already significant 30-60 seconds after the start of deep breathing. In the group SW there were no statistically significant differences between the effects of nasal and oral hyperventilation. Unilateral nasal hyperventilation (the other nasal cavity being closed by tamponade) demonstrated a more pronounced activating effect on ipsilateral localized temporal EEG abnormalities. These effects of deep nasal breathing can hardly be explained by metabolic-vascular mechanisms, which probably are involved in the course of oral hyperventilation. On the other hand they are in agreement with animal experiments demonstrating that the mechanical stimulus of nasal air flow operates as a synchronizing impulse for certain rhinencephalic structures.  相似文献   
70.
Deep nasal breathing [with the mouth closed] activates [to a certain extent selectively], in the human EEG, epileptic abnormalities of diencephalotemporal origin [Servít et al. 1977]. This activating effect could be suppressed by local anaesthesia of the mucosa membrane in the superior nasal meatus. The same abnormalities could be elicited or activated by air insufflation into the upper nasal cavity, without pulmonary hyperventilation. These results speak in favour of the assumption that a neural [reflex] mechanism of the activating effect of nasal hyperventilation is involved, with a reflexogenic area in the superior nasal meatus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号