首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1872篇
  免费   156篇
  2024年   2篇
  2023年   4篇
  2022年   17篇
  2021年   32篇
  2020年   16篇
  2019年   36篇
  2018年   27篇
  2017年   35篇
  2016年   40篇
  2015年   70篇
  2014年   77篇
  2013年   112篇
  2012年   121篇
  2011年   135篇
  2010年   94篇
  2009年   79篇
  2008年   118篇
  2007年   144篇
  2006年   129篇
  2005年   108篇
  2004年   137篇
  2003年   126篇
  2002年   134篇
  2001年   25篇
  2000年   19篇
  1999年   18篇
  1998年   31篇
  1997年   15篇
  1996年   19篇
  1995年   10篇
  1994年   6篇
  1993年   11篇
  1992年   11篇
  1991年   6篇
  1990年   6篇
  1989年   6篇
  1988年   6篇
  1987年   2篇
  1985年   7篇
  1984年   6篇
  1983年   2篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1962年   1篇
  1956年   1篇
  1943年   1篇
排序方式: 共有2028条查询结果,搜索用时 15 毫秒
81.
In this paper, the synthesis and structure-activity relationships (SAR) of two classes of electrophile-based dipeptidyl peptidase IV (DPP IV) inhibitors, the ketopyrrolidines and ketoazetidines, is discussed. The SAR of these series demonstrate that the 2-thiazole, 2-benzothiazole, and 2-pyridylketones are optimal S1' binding groups for potency against DPP IV. In addition, both cyclohexyl glycine (CHG) and octahydroindole carboxylate (OIC) serve as the most potent S2 binding groups within each series. Stereochemistry at the alpha-position of the central ring is relevant to potency within the ketopyrrolidines series, but not in the ketoazetidine series. Finally, the ketoazetidines display enhanced stability over the corresponding ketopyrrolidines, while maintaining their potency. In fact, certain stabilized ketoazetidines can maintain their in vitro potency and inhibit DPP IV in the plasma for up to 6h.  相似文献   
82.
83.
BACKGROUND: Recent studies indicate that the innate component of immune defense plays an important role in the establishment of antigen-specific immune response. We have previously isolated a novel mouse gene tag7/PGRP that was shown to be involved in the innate component of the immune system, and its insect homologue is an upstream mediator of Toll signaling in Drosophila. METHODS: Transiently or stably genetically modified mouse tumor cell lines expressing Tag7 were used. Tumor growth rate and animal survival were analyzed. Possible effector cells involved in tumor suppression were detected immunohistochemically. RESULTS: Transfection of mammary gland adenocarcinoma cells with the tag7 cDNA did not alter their growth rate in vitro but diminished their tumorogenicity in vivo in syngeneic and immunodeficient animals. Increased incidence of apoptosis was registered in the modified tumors. Transient expression of Tag7 by mouse melanoma M3 cells elicited protective immunity against parental tumor cells. Immunohistochemical analysis revealed that tumors after immunization with the genetically modified cells were infiltrated with Mac1(+) cells, B220(+) cells, and NK cells. Using nude mice we observed rejection of modified cells, but did not detect memory formation. CONCLUSIONS: We can conclude that secretion of the Tag7 protein by genetically modified cells can induce mobilization of antigen-presenting cells and innate effectors. Memory mechanisms are mediated by T cell response. For the first time our results demonstrate that local secretion of Tag7-the molecule involved in innate immunity-may play an important role in the induction of effective antitumor response in mice.  相似文献   
84.
The experiments with the isolated rat heart demonstrated a significant decrease in reperfusion-induced damage of cardiomyocytes upon adding the selective 1 receptor agonist DPDPE (0.1 mg/l) to the perfusion solution. On the contrary, no cardioprotective effect was observed for 0.5 mg/l concentration of the peptide or after its intravenous injection. Stimulation of the cardiac 1 opioid receptors by intravenous injection of 0.5 mg/kg DPDPE or its addition to the perfusion solution decreased myocardial contractility both under conditions of normal oxygenation and during reperfusion. Thus, the cardioprotective and negative inotropic effect of DPDPE is mediated by activation of the cardiac 1 opioid receptors.  相似文献   
85.
The present widespread conceptual model of the neurophysiological picture of human fatigue, chronic fatigue, and overfatigue is limited to the picture of hypoexcitability and development of inhibitory processes in the CNS. The results of this study show that, when fatigue deepens and is followed by chronic fatigue and overfatigue, the inhibitory processes that developed earlier weaken. The speed of nervous processes and their lability increase in this period, exceeding the initial normal baseline values; the differential inhibition strengthens. Both main nervous processes weaken; the excitatory process begins to relatively predominate. The equalization and paradoxical phases manifest themselves in the CNS functioning. As fatigue deepens and overfatigue develops, excitability of nervous structures continues decreasing. Interhemispheric asymmetry increases.  相似文献   
86.
The effect of acidification of the incubation medium on the membrane potential and glutamate uptake and release was studied in isolated presynaptic neuronal endings (synaptosomes) from rat brain. Using the fluorescent probe diS-C3-(5), a rapid depolarization of plasma membrane was detected at pH 6.0, most probably as a result of the inhibition of the sodium pump and potassium channel blockade. The membrane potential decrease did not result in increase of basal efflux of glutamate. Glutamate release following K+-induced depolarization was decreased upon lowering pH to 6.0. Acidosis inhibited mainly calcium-dependent (vesicular) release of glutamate and did not significantly reduce [14C]glutamate uptake. This inhibition of glutamate release but not of glutamate uptake may be a mechanism of the protective effect of acidosis during brain ischemia.  相似文献   
87.
A strategy to deplete eosinophils from the lungs of ovalbumin (OVA)-sensitized/challenged mice was developed using antibody-mediated depletion. Concurrent administration [viz. the peritoneal cavity (systemic) and as an aerosol to the lung (local)] of a rat anti-mouse CCR3 monoclonal antibody resulted in the abolition of eosinophils from the lung such that the airway lumen was essentially devoid of eosinophils. Moreover, perivascular/peribronchial eosinophil numbers were reduced to levels indistinguishable from saline-challenged animals. This antibody-mediated depletion was not accompanied by effects on any other leukocyte population, including, but not limited to, T cells and mast cells/basophils. In addition, no effects were observed on other underlying allergic inflammatory responses in OVA-treated mice, including OVA-specific immunoglobulin production as well as T cell-dependent elaboration of Th2 cytokines. The ablation of virtually all pulmonary eosinophils in OVA-treated mice (i.e., without concurrent effects on T cell activities) resulted in a significant decrease in mucus accumulation and abolished allergen-induced airway hyperresponsiveness. These data demonstrate a direct causative relationship between allergen-mediated pulmonary pathologies and eosinophils.  相似文献   
88.
The adeno-associated virus type 2 (AAV2) uses heparan sulfate proteoglycan (HSPG) as its primary cellular receptor. In order to identify amino acids within the capsid of AAV2 that contribute to HSPG association, we used biochemical information about heparin and heparin sulfate, AAV serotype protein sequence alignments, and data from previous capsid studies to select residues for mutagenesis. Charged-to-alanine substitution mutagenesis was performed on individual residues and combinations of basic residues for the production and purification of recombinant viruses that contained a green fluorescent protein (GFP) reporter gene cassette. Intact capsids were assayed for their ability to bind to heparin-agarose in vitro, and virions that packaged DNA were assayed for their ability to transduce normally permissive cell lines. We found that mutation of arginine residues at position 585 or 588 eliminated binding to heparin-agarose. Mutation of residues R484, R487, and K532 showed partial binding to heparin-agarose. We observed a general correlation between heparin-agarose binding and infectivity as measured by GFP transduction; however, a subset of mutants that partially bound heparin-agarose (R484A and K532A) were completely noninfectious, suggesting that they had additional blocks to infectivity that were unrelated to heparin binding. Conservative mutation of positions R585 and R588 to lysine slightly reduced heparin-agarose binding and had comparable effects on infectivity. Substitution of AAV2 residues 585 through 590 into a location predicted to be structurally equivalent in AAV5 generated a hybrid virus that bound to heparin-agarose efficiently and was able to package DNA but was noninfectious. Taken together, our results suggest that residues R585 and R588 are primarily responsible for heparin sulfate binding and that mutation of these residues has little effect on other aspects of the viral life cycle. Interactive computer graphics examination of the AAV2 VP3 atomic coordinates revealed that residues which contribute to heparin binding formed a cluster of five basic amino acids that presented toward the icosahedral threefold axis from the surrounding spike protrusion. Three other kinds of mutants were identified. Mutants R459A, H509A, and H526A/K527A bound heparin at levels comparable to that of wild-type virus but were defective for transduction. Another mutant, H358A, was defective for capsid assembly. Finally, an R459A mutant produced significantly lower levels of full capsids, suggesting a packaging defect.  相似文献   
89.
Ataxia-telangiectasia Mutated (ATM), mutated in the human disorder ataxia-telangiectasia, is rapidly activated by DNA double strand breaks. The mechanism of activation remains unresolved, and it is uncertain whether autophosphorylation contributes to activation. We describe an in vitro immunoprecipitation system demonstrating activation of ATM kinase from unirradiated extracts by preincubation with ATP. Activation is both time- and ATP concentration-dependent, other nucleotides fail to activate ATM, and DNA is not required. ATP activation is specific for ATM since it is not observed with kinase-dead ATM, it requires Mn2+, and it is inhibited by wortmannin. Exposure of activated ATM to phosphatase abrogates activity, and repeat cycles of ATP and phosphatase treatment reveal a requirement for autophosphorylation in the activation process. Phosphopeptide mapping revealed similarities between the patterns of autophosphorylation for irradiated and ATP-treated ATM. Caffeine inhibited ATM kinase activity for substrates but did not interfere with ATM autophosphorylation. ATP failed to activate either A-T and rad3-related protein (ATR) or DNA-dependent protein kinase under these conditions, supporting the specificity for ATM. These data demonstrate that ATP can specifically induce activation of ATM by a mechanism involving autophosphorylation. The relationship of this activation to DNA damage activation remains unclear but represents a useful model for understanding in vivo activation.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号