首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1226篇
  免费   74篇
  2023年   8篇
  2022年   10篇
  2021年   50篇
  2020年   16篇
  2019年   33篇
  2018年   43篇
  2017年   22篇
  2016年   44篇
  2015年   74篇
  2014年   85篇
  2013年   117篇
  2012年   121篇
  2011年   112篇
  2010年   52篇
  2009年   59篇
  2008年   75篇
  2007年   80篇
  2006年   58篇
  2005年   43篇
  2004年   32篇
  2003年   30篇
  2002年   24篇
  2001年   10篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   8篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1989年   7篇
  1988年   3篇
  1987年   7篇
  1986年   3篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1974年   5篇
  1973年   3篇
  1972年   2篇
  1968年   1篇
排序方式: 共有1300条查询结果,搜索用时 15 毫秒
61.

Background

The clinical use of purified SOD enzymes has strong limitations due to their large molecular size, high production cost and immunogenicity. These limitations could be compensated by using instead synthetic SOD mimetic compounds of low molecular weight.

Background/Methodology

We have recently reported that two SOD mimetic compounds, the MnII complexes of the polyamines Pytren2Q and Pytren4Q, displayed high antioxidant activity in bacteria and yeast. Since frequently molecules with antioxidant properties or free-radical scavengers also have anti-inflammatory properties we have assessed the anti-inflammatory potential of Pytren2Q and Pytren4Q MnII complexes, in cultured macrophages and in a murine model of inflammation, by measuring the degree of protection they could provide against the cellular injury produced by lipopolisacharide, a bacterial endotoxin.

Principal Findings

In this report we show that the MnII complex of Pytren4Q but not that of Pytren2Q effectively protected human cultured THP-1 macrophages and whole mice from the inflammatory effects produced by LPS. These results obtained with two molecules that are isomers highlight the importance of gathering experimental data from animal models of disease in assessing the potential of candidate molecules.

Conclusion/Significance

The effective anti-inflammatory activity of the MnII complex of Pytren4Q in addition to its low toxicity, water solubility and ease of production would suggest it is worth taking into consideration for future pharmacological studies.  相似文献   
62.
63.
ObjectiveThe role of complement system in the pathogenesis of systemic sclerosis (SSc) has been debated during the last decade but an evident implication in this disease has never been found. We carried out an explorative study on SSc patients to evaluate the expression of soluble and local C5b-9 complement complex and its relation with a complement regulator, the Membrane Cofactor Protein (MCP, CD46) on skin vascular bed as target distinctive of SSc disease. We also analyzed two polymorphic variants in the complement activation gene cluster involving the MCP region.MethodsC5b-9 plasma levels of SSc patients and healthy subjects were analyzed by ELISA assay. Archival skin biopsies of SSc patients and controls were subjected to immunofluorescence analysis to detect C5b-9 and MCP on vascular endothelial cells. The expression of MCP was validated by immunoblot analysis with specific antibody. Polymorphic variants in the MCP gene promoter were tested by a quantitative PCR technique-based allelic discrimination method.ResultsEven though circulating levels of C5b-9 did not differ between SSc and controls, C5b-9 deposition was detected in skin biopsies of SSc patients but not in healthy subjects. MCP was significantly lower in skin vessels of SSc patients than in healthy controls and was associated with the over-expression of two polymorphic variants in the MCP gene promoter, which has been related to more aggressive phenotypes in other immune-mediated diseases.ConclusionsOur results firsty document the local complement activation with an abnormal expression of MCP in skin vessels of SSc patients, suggesting that a subset of SSc patients might be exposed to more severe organ complications and clinical evolution due to abnormal local complement activation.  相似文献   
64.
65.
66.

Background

Levosimendan protects rat liver against peroxidative injuries through mechanisms related to nitric oxide (NO) production and mitochondrial ATP-dependent K (mitoKATP) channels opening. However, whether levosimendan could modulate the cross-talk between apoptosis and autophagy in the liver is still a matter of debate. Thus, the aim of this study was to examine the role of levosimendan as a modulator of the apoptosis/autophagy interplay in liver cells subjected to peroxidation and the related involvement of NO and mitoKATP.

Methods and Findings

In primary rat hepatocytes that have been subjected to oxidative stress, Western blot was performed to examine endothelial and inducible NO synthase isoforms (eNOS, iNOS) activation, apoptosis/autophagy and survival signalling detection in response to levosimendan. In addition, NO release, cell viability, mitochondrial membrane potential and mitochondrial permeability transition pore opening (MPTP) were examined through specific dyes. Some of those evaluations were also performed in human hepatic stellate cells (HSC). Pre-treatment of hepatocytes with levosimendan dose-dependently counteracted the injuries caused by oxidative stress and reduced NO release by modulating eNOS/iNOS activation. In hepatocytes, while the autophagic inhibition reduced the effects of levosimendan, after the pan-caspases inhibition, cell survival and autophagy in response to levosimendan were increased. Finally, all protective effects were prevented by both mitoKATP channels inhibition and NOS blocking. In HSC, levosimendan was able to modulate the oxidative balance and inhibit autophagy without improving cell viability and apoptosis.

Conclusions

Levosimendan protects hepatocytes against oxidative injuries by autophagic-dependent inhibition of apoptosis and the activation of survival signalling. Such effects would involve mitoKATP channels opening and the modulation of NO release by the different NOS isoforms. In HSC, levosimendan would also play a role in cell activation and possible evolution toward fibrosis. These findings highlight the potential of levosimendan as a therapeutic agent for the treatment or prevention of liver ischemia/reperfusion injuries.  相似文献   
67.

Objective

We assessed the association between gender and mortality on antiretroviral therapy (ART) using identical models with and without sex-specific categories for weight and hemoglobin.

Design

Cohort study of adult patients on ART.

Setting

GHESKIO Clinic in Port-au-Prince, Haiti.

Participants

4,717 ART-naïve adult patients consecutively enrolled on ART at GHESKIO from 2003 to 2008.

Main Outcome Measure

Mortality on ART; multivariable analyses were conducted with and without sex-specific categories for weight and hemoglobin.

Results

In Haiti, male gender was associated with mortality (OR 1.61; 95% CI: 1.30–2.00) in multivariable analyses with hemoglobin and weight included as control variables, but not when sex-specific interactions with hemoglobin and weight were used.

Conclusions

If sex-specific categories are omitted, multivariable analyses indicate a higher risk of mortality for males vs. females of the same weight and hemoglobin. However, because males have higher normal values for weight and hemoglobin, the males in this comparison would generally have poorer health status than the females. This may explain why gender differences in mortality are sometimes observed after controlling for differences in baseline variables when gender-specific interactions with weight and hemoglobin are omitted.  相似文献   
68.

Introduction

Metformin is proposed as adjuvant therapy in cancer treatment because of its ability to limit cancer incidence by negatively modulating the PI3K/AKT/mTOR pathway. In vitro, in addition to inhibiting cancer cell proliferation, metformin can also induce apoptosis. The molecular mechanism underlying this second effect is still poorly characterized and published data are often contrasting. We investigated how nutrient availability can modulate metformin-induced apoptosis in three breast cancer cell lines.

Material and Methods

MCF7, SKBR3 and MDA-MB-231 cells were plated in MEM medium supplemented with increasing glucose concentrations or in DMEM medium and treated with 10 mM metformin. Cell viability was monitored by Trypan Blue assay and treatment effects on Akt/mTOR pathway and on apoptosis were analysed by Western Blot. Moreover, we determined the level of expression of pyruvate kinase M2 (PKM2), a well-known glycolytic enzyme expressed in cancer cells.

Results

Our results showed that metformin can induce apoptosis in breast cancer cells when cultured at physiological glucose concentrations and that the pro-apoptotic effect was completely abolished when cells were grown in high glucose/high amino acid medium. Induction of apoptosis was found to be dependent on AMPK activation but, at least partially, independent of TORC1 inactivation. Finally, we showed that, in nutrient-poor conditions, metformin was able to modulate the intracellular glycolytic equilibrium by downregulating PKM2 expression and that this mechanism was mediated by AMPK activation.

Conclusion

We demonstrated that metformin induces breast cancer cell apoptosis and PKM2 downregulation only in nutrient-poor conditions. Not only glucose levels but also amino acid concentration can influence the observed metformin inhibitory effect on the mTOR pathway as well as its pro-apoptotic effect. These data demonstrate that the reduction of nutrient supply in tumors can increase metformin efficacy and that modulation of PKM2 expression/activity could be a promising strategy to boost metformin anti-cancer effect.  相似文献   
69.
The reduction of nitrite into nitric oxide (NO) in denitrifying bacteria is catalyzed by nitrite reductase. In several species, this enzyme is a heme-containing protein with one c heme and one d1 heme per monomer (cd1NiR), encoded by the nirS gene.  相似文献   
70.
A(2A) adenosine receptors are considered an excellent target for drug development in several neurological and psychiatric disorders. It is noteworthy that the responses evoked by A(2A) adenosine receptors are regulated by D(2) dopamine receptor ligands. These two receptors are co-expressed at the level of the basal ganglia and interact to form functional heterodimers. In this context, possible changes in A(2A) adenosine receptor functional responses caused by the chronic blockade/activation of D(2) dopamine receptors should be considered to optimise the therapeutic effectiveness of dopaminergic agents and to reduce any possible side effects. In the present paper, we investigated the regulation of A(2A) adenosine receptors induced by antipsychotic drugs, commonly acting as D(2) dopamine receptor antagonists, in a cellular model co-expressing both A(2A) and D(2) receptors. Our data suggest that the treatment of cells with the classical antipsychotic haloperidol increased both the affinity and responsiveness of the A(2A) receptor and also affected the degree of A(2A)-D(2) receptor heterodimerisation. In contrast, an atypical antipsychotic, clozapine, had no effect on A(2A) adenosine receptor parameters, suggesting that the two classes of drugs have different effects on adenosine-dopamine receptor interaction. Modifications to A(2A) adenosine receptors may play a significant role in determining cerebral adenosine effects during the chronic administration of antipsychotics in psychiatric diseases and may account for the efficacy of A(2A) adenosine receptor ligands in pathologies associated with dopaminergic system dysfunction. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11302-010-9201-z) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号