首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11528篇
  免费   793篇
  国内免费   153篇
  2023年   36篇
  2022年   59篇
  2021年   255篇
  2020年   204篇
  2019年   241篇
  2018年   305篇
  2017年   250篇
  2016年   459篇
  2015年   654篇
  2014年   801篇
  2013年   827篇
  2012年   1011篇
  2011年   945篇
  2010年   538篇
  2009年   532篇
  2008年   723篇
  2007年   668篇
  2006年   627篇
  2005年   536篇
  2004年   501篇
  2003年   411篇
  2002年   362篇
  2001年   226篇
  2000年   211篇
  1999年   151篇
  1998年   66篇
  1997年   60篇
  1996年   57篇
  1995年   62篇
  1994年   44篇
  1993年   30篇
  1992年   66篇
  1991年   43篇
  1990年   49篇
  1989年   51篇
  1988年   40篇
  1987年   33篇
  1986年   22篇
  1985年   29篇
  1984年   29篇
  1983年   18篇
  1982年   21篇
  1979年   21篇
  1978年   20篇
  1976年   15篇
  1975年   12篇
  1974年   17篇
  1973年   20篇
  1972年   14篇
  1971年   13篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
71.
Rebamipide, a novel antipeptic ulcer drug, 2-(4-chlorobenzoylamino)-3-[2(1H)-quinolinone-4-yl]-propionic acid, was studied for its inhibitory effect on gastric xanthine oxidase activity and type conversion of the enzyme that has a profound role in free radical generation. Intraperitoneal administration of rebamipide at 60 mg/kg body weight reduced gastric mucosal hemorrhagic lesions and lipid peroxidation, which was proportional to the inhibitory effect of rebamipide on alcohol-induced xanthine oxidase-type conversion and enzyme activity. It was also observed that the activity of xanthine oxidase was significantly inhibited by administration of rebamipide at 60 mg/kg body weight, leading to a significant reduction of lipid peroxide content in alcohol-treated rats. The results suggest that alcohol-induced gastric mucosal lesions might be, in part, due to the increased activity of xanthine oxidase and type conversion rate of the enzyme and the protective effect of rebamipide on gastric mucosal lesions would result from its ability to protect against oxidative stress on gastric mucosal lesions of alcohol-treated rats.  相似文献   
72.
73.
74.
Summary Production of galacto-oligosaccharide (GO), including trisaccharide and tetrasaccharide, was performed using a -galactosidase in water-hydrophobic solvent mixtures. A maximum GO concentration of 45% (w/w) was attained in a 95% cyclohexane/5% water mixture from a 55% (w/w) of lactose at 60°C and pH 6.0, while a maximum of 38% GO in aqueous media. GO production decreased with an increase in surfactant concentration. The optimum water content for GO production showed a broad range from 2.5 to 10% (v/v). Solvent properties, such as log P and the dipole moment, had no relation to GO production.  相似文献   
75.
Summary To isolate a novel gene that contains an SH2 domain, we devised a rapid and nonradioactive cDNA library screening method using polymerase chain reaction (PCR). For PCR amplification, we designed degenerate oligonucleotide primers from the multialigned DNA sequences of SH2 domains. This method offers an inexpensive and efficient approach for the isolation of clones of interest from cDNA libraries.  相似文献   
76.
We describe here a new type of X-linked liver glycogen storage disease. The main symptoms include liver enlargement and growth retardation. The clinical and biochemical abnormalities of this glycogenosis are similar to those of classical X-linked liver glycogenosis due to phosphorylase kinase deficiency (XLG). However, in contrast to patients with XLG, the patients described here have no reduced phosphorylase kinase activity in erythrocytes and leukocytes, and no enzyme deficiency could be found. Linkage analysis of four families with this X-linked type of liver glycogenosis assigned the disease gene to Xp22. Lod scores obtained with the markers DXS987, DXS207, and DXS999 were 3.97, 2.71, and 2.40, respectively, all at 0% recombination. Multipoint linkage analysis localized the disease gene between DXS143 and DXS989 with a maximum lod score of 4.70 at θ = 0, relative to DXS987. As both the classical XLG gene and the liver α-subunit of PHK (PHKA2) are also located in Xp22, this variant type of XLG may be allelic to classical XLG, and both diseases may be caused by mutations in PHKA2. Therefore, we propose to classify XLG as XLG type I (the classical type of XLG) and XLG type II (the variant type of XLG).  相似文献   
77.
78.
Abstract: We have analyzed free chiral amino acids (aspartate and serine) in the human frontal cortex at different ontogenic stages (from 14 weeks of gestation to 101 years of age) by HPLC with fluorometric detection after derivatization with N-tert -butyl-oxycarbonyl- l -cysteine and o -phthaldialdehyde. Exceptionally high levels of free d -aspartate and d -serine were demonstrated in the fetal cortex at gestational week 14. The ratios of d -aspartate and of d -serine to the total corresponding amino acids were also high, at 0.63 and 0.27, respectively. The concentration of d -aspartate dramatically decreased to a trace level by gestational week 41 and then remained very low during all postnatal stages. In contrast, the frontal tip contained persistently high levels of d -serine throughout embryonic and postnatal life, whereas the d -amino acid content in adolescents and aged individuals was about half of that in the fetuses. Because d -aspartate and d -serine are known to have selective actions at the NMDA-type excitatory amino acid receptor, the present data suggest that these d -amino acids might play a pivotal role in cerebral development and functions that are related to the NMDA receptor.  相似文献   
79.
Bone remodelling is mediated by orchestrated communication between osteoclasts and osteoblasts which, in part, is regulated by coupling and anti-coupling factors. Amongst formally known anti-coupling factors, Semaphorin 4D (Sema4D), produced by osteoclasts, plays a key role in downmodulating osteoblastogenesis. Sema4D is produced in both membrane-bound and soluble forms; however, the mechanism responsible for producing sSema4D from osteoclasts is unknown. Sema4D, TACE and MT1-MMP are all expressed on the surface of RANKL-primed osteoclast precursors. However, only Sema4D and TACE were colocalized, not Sema4D and MT1-MMP. When TACE and MT1-MMP were either chemically inhibited or suppressed by siRNA, TACE was found to be more engaged in shedding Sema4D. Anti-TACE-mAb inhibited sSema4D release from osteoclast precursors by ~90%. Supernatant collected from osteoclast precursors (OC-sup) suppressed osteoblastogenesis from MC3T3-E1 cells, as measured by alkaline phosphatase activity, but OC-sup harvested from the osteoclast precursors treated with anti-TACE-mAb restored osteoblastogenesis activity in a manner that compensates for diminished sSema4D. Finally, systemic administration of anti-TACE-mAb downregulated the generation of sSema4D in the mouse model of critical-sized bone defect, whereas local injection of recombinant sSema4D to anti-TACE-mAb-treated defect upregulated local osteoblastogenesis. Therefore, a novel pathway is proposed whereby TACE-mediated shedding of Sema4D expressed on the osteoclast precursors generates functionally active sSema4D to suppress osteoblastogenesis.  相似文献   
80.
Cav3.1 T-type Ca2+ channels play pivotal roles in neuronal low-threshold spikes, visceral pain, and pacemaker activity. Phosphorylation has been reported to potently regulate the activity and gating properties of Cav3.1 channels. However, systematic identification of phosphorylation sites (phosphosites) in Cav3.1 channel has been poorly investigated. In this work, we analyzed rat Cav3.1 protein expressed in HEK-293 cells by mass spectrometry, identified 30 phosphosites located at the cytoplasmic regions, and illustrated them as a Cav3.1 phosphorylation map which includes the reported mouse Cav3.1 phosphosites. Site-directed mutagenesis of the phosphosites to Ala residues and functional analysis of the phospho-silent Cav3.1 mutants expressed in Xenopus oocytes showed that the phospho-silent mutation of the N-terminal Ser18 reduced its current amplitude with accelerated current kinetics and negatively shifted channel availability. Remarkably, the phospho-silent mutations of the C-terminal Ser residues (Ser1924, Ser2001, Ser2163, Ser2166, or Ser2189) greatly reduced their current amplitude without altering the voltage-dependent gating properties. In contrast, the phosphomimetic Asp mutations of Cav3.1 on the N- and C-terminal Ser residues reversed the effects of the phospho-silent mutations. Collectively, these findings demonstrate that the multiple phosphosites of Cav3.1 at the N- and C-terminal regions play crucial roles in the regulation of the channel activity and voltage-dependent gating properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号