首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   31篇
  2021年   5篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   10篇
  2014年   8篇
  2013年   5篇
  2012年   10篇
  2011年   7篇
  2010年   8篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   10篇
  2005年   7篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   7篇
  2000年   8篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   9篇
  1991年   7篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   6篇
  1983年   1篇
  1982年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有199条查询结果,搜索用时 31 毫秒
91.
The eukaryotic replisome is disassembled in each cell cycle, dependent upon ubiquitylation of the CMG helicase. Studies of Saccharomyces cerevisiae, Caenorhabditis elegans and Xenopus laevis have revealed surprising evolutionary diversity in the ubiquitin ligases that control CMG ubiquitylation, but regulated disassembly of the mammalian replisome has yet to be explored. Here, we describe a model system for studying the ubiquitylation and chromatin extraction of the mammalian CMG replisome, based on mouse embryonic stem cells. We show that the ubiquitin ligase CUL2LRR1 is required for ubiquitylation of the CMG‐MCM7 subunit during S‐phase, leading to disassembly by the p97 ATPase. Moreover, a second pathway of CMG disassembly is activated during mitosis, dependent upon the TRAIP ubiquitin ligase that is mutated in primordial dwarfism and mis‐regulated in various cancers. These findings indicate that replisome disassembly in diverse metazoa is regulated by a conserved pair of ubiquitin ligases, distinct from those present in other eukaryotes.  相似文献   
92.
Khade  Bipin S  Gawali  Poonam G  Waghmare  Manik M  Dongre  PM 《Food biophysics》2021,16(2):280-291
Food Biophysics - Engineered biocatalyst and its desired products using nanotechnology has intensified the research in food industries. Zinc oxide (ZnO) nanosheet is designed and prepared; the...  相似文献   
93.

Background

Escherichia coli O157:H7 is the most common serovar of enterohemorrhagic E. coli associated with serious human disease outbreaks. Cattle are the main reservoir with E. coli O157:H7 inducing hemorrhagic enteritis in persistent shedding beef cattle, however little is known about how this pathogen affects cattle health. Jejunal Hemorrhage Syndrome (JHS) has unclear etiology but the pathology is similar to that described for E. coli O157:H7 challenged beef cattle suggestive that E. coli O157:H7 could be involved. There are no effective treatments for JHS however new approaches to managing pathogen issues in livestock using prebiotics and probiotics are gaining support. The first objective of the current study was to characterize pathogen colonization in hemorrhaged jejunum of dairy cattle during natural JHS outbreaks. The second objective was to confirm the association of mycotoxigenic fungi in feeds with the development of JHS and also to identify the presence of potential mycotoxins. The third objective was to determine the impact of a prebiotic, Celmanax?, or probiotic, Dairyman's Choice? paste, on the cytotoxicity associated with feed extracts in vitro. The fourth objective was to determine the impact of a prebiotic or a probiotic on E. coli O157:H7 colonization of mucosal explants and a bovine colonic cell line in vitro. The final objective was to determine if prebiotic and probiotic feed additives could modify the symptoms that preceded JHS losses and the development of new JHS cases.

Findings

Dairy cattle developed JHS after consuming feed containing several types of mycotoxigenic fungi including Fusarium culmorum, F. poae, F. verticillioides, F. sporotrichioides, Aspergillus flavus, Penicillium roqueforti, P. crustosum, P. paneum and P. citrinum. Mixtures of Shiga toxin - producing Escherichia coli (STEC) colonized the mucosa in the hemorrhaged tissues of the cattle and no other pathogen was identified. The STECs expressed Stx1 and Stx2, but more significantly, Stxs were also present in the blood clot blocking the jejunum. Mycotoxin analysis of the corn crop confirmed the presence of fumonisin, NIV, ZEAR, DON, 15-ADON, 3-ADON, NEO, DAS, HT-2 and T-2. Feed extracts were toxic to enterocytes and 0.1% Celmanax? removed the cytotoxicity in vitro. There was no effect of Dairyman's Choice? paste on feed-extract activity in vitro. Fumonisin, T-2, ZEAR and DON were toxic to bovine cells and 0.1% Celmanax? removed the cytotoxicity in vitro. Celmanax? also directly decreased E. coli O157:H7 colonization of mucosal explants and a colonic cell line in a dose-dependent manner. There was no effect of Dairyman's Choice? paste on E. coli O157:H7 colonization in vitro. The inclusion of the prebiotic and probiotic in the feed was associated with a decline in disease.

Conclusion

The current study confirmed an association between mycotoxigenic fungi in the feed and the development of JHS in cattle. This association was further expanded to include mycotoxins in the feed and mixtures of STECs colonizing the severely hemorrhaged tissues. Future studies should examine the extent of involvement of the different STEC in the infection process. The prebiotic, Celmanax?, acted as an anti-adhesive for STEC colonization and a mycotoxin binder in vitro. Future studies should determine the extent of involvement of the prebiotic in altering disease.  相似文献   
94.
95.
96.
The enteric nervous system (ENS) develops from neural crest cells that enter the gut, migrate, proliferate, and differentiate into neurons and glia. The growth factor glial-derived neurotrophic factor (GDNF) stimulates the proliferation and survival of enteric crest-derived cells. We investigated the intracellular signaling pathways activated by GDNF and their involvement in proliferation. We found that GDNF stimulates the phosphorylation of both the PI 3-kinase downstream substrate Akt and the MAP kinase substrate ERK in cultures of immunoaffinity-purified embryonic avian enteric crest-derived cells. The selective PI 3-kinase inhibitor LY-294002 blocked GDNF-stimulated Akt phosphorylation in purified crest cells, and reduced proliferation in cultures of dissociated quail gut. The ERK kinase (MEK) inhibitors PD 98059 and UO126 did not reduce GDNF-stimulated proliferation, although PD 98059 blocked GDNF-stimulated phosphorylation of ERK. We conclude that the PI 3-kinase pathway is necessary for the GDNF-stimulated proliferation of enteric neuroblasts.  相似文献   
97.
The Hmgi protein family of chromosomal architectural factors is extensively studied for its roles in embryogenesis and its association with benign mesenchymal tumors. Although the biochemical function of Hmga1 has been studied in vitro, to provide in vivo insight into its biological function, a targeted disruption of Hmga1 was initiated. Chimeric founder mice were derived from embryonic stem (ES) cells harboring a targeted mutation in a single Hmga1 allele. These 14 different chimeric founders produced 494 black progeny. Since none of these 494 progeny were agouti, none of them were derived from ES cells. Control injections of the wild-type ES cell lines resulted in ES cell derived agouti mice, indicating that the ES cells were totipotent. Therefore, our results indicate that one intact Hmga1 allele was not sufficient for germ-line transmission of the ES cells. Seven chimeric founder mice that were examined histologically demonstrated aberrant regions in their reproductive organs. Aberrant regions of seminiferous tubules were reduced in diameter, demonstrated vacuolated Sertoli cells, and had an absolute deficiency of sperm. While the Hmga1(+/-) ES cells were shown to contribute to the formation of the epididymides, they did not significantly contribute to the testes of chimeric founder mice. No sperm isolated from any of the Hmga1(+/-) chimeric mice were shown to arise from the ES cells, as none of them contained the targeted disruption of the Hmga1 gene. Our results suggest that both alleles of Hmga1 are required for normal sperm production in the mouse.  相似文献   
98.
Sir2 is a NAD(+)-dependent histone deacetylase that controls gene silencing, cell cycle, DNA damage repair, and life span. Prompted by the observation that the [NAD(+)]/[NADH] ratio is subjected to dynamic fluctuations in skeletal muscle, we have tested whether Sir2 regulates muscle gene expression and differentiation. Sir2 forms a complex with the acetyltransferase PCAF and MyoD and, when overexpressed, retards muscle differentiation. Conversely, cells with decreased Sir2 differentiate prematurely. To inhibit myogenesis, Sir2 requires its NAD(+)-dependent deacetylase activity. The [NAD(+)]/[NADH] ratio decreases as muscle cells differentiate, while an increased [NAD(+)]/[NADH] ratio inhibits muscle gene expression. Cells with reduced Sir2 levels are less sensitive to the inhibition imposed by an elevated [NAD(+)]/[NADH] ratio. These results indicate that Sir2 regulates muscle gene expression and differentiation by possibly functioning as a redox sensor. In response to exercise, food intake, and starvation, Sir2 may sense modifications of the redox state and promptly modulate gene expression.  相似文献   
99.
A chlorate reductase has been purified from the chlorate-reducing strain Pseudomonas chloritidismutans. Comparison with the periplasmic (per)chlorate reductase of strain GR-1 showed that the cytoplasmic chlorate reductase of P. chloritidismutans reduced only chlorate and bromate. Differences were also found in N-terminal sequences, molecular weight, and subunit composition. Metal analysis and electron paramagnetic resonance measurements showed the presence of iron and molybdenum, which are also found in other dissimilatory oxyanion reductases.  相似文献   
100.
Kelley AE  Schiltz CA 《Neuron》2004,42(2):181-183
The prefrontal cortex mediates many aspects of addiction. In this issue of Neuron, Bowers et al. demonstrate that an activator of G protein signaling (AGS3) is persistently upregulated in the prefrontal cortex after cessation of chronic cocaine treatment. Furthermore, they find that AGS3 is responsible for altered behavior, such as enhanced drug seeking, and altered neurotransmission in cocaine-treated rats, representing a novel therapeutic target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号