首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   6篇
  2006年   6篇
  2005年   6篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
41.
Homeoboxes have previously been documented from various phyla of triploblastic, coelomate and pseudocoelomate, animals. We report here the first homeoboxes from cnidarians, a phylum of diploblastic organisms thought to occupy a near-basal position in metazoan phylogeny. We have sequenced three partial (77 bp) fragments of Antennapedia (Antp) class homeoboxes from the hydroids Hydractinia symbiolongicarpus and Eleutheria dichotoma. A pair of fragments, Cnox-2-Hs and Cnox-2-Ed, from the two species differ in nucleotide sequences but have identical derived amino acid sequences. A gene tree produced by parsimony analysis shows that these two fragments cluster within the Antp homeobox lineage. The third fragment, Cnox-1, clusters as a sister group of the other Antp class homeoboxes.  相似文献   
42.
The isolation of Hox genes from two cnidarian groups, the Hydrozoa and Anthozoa, has sparked hypotheses on the early evolution of Hox genes and a conserved role for these genes for defining a main body axis in all metazoan animals. We have isolated the first five Hox genes, Scox-1 to Scox-5, from the third cnidarian class, the Scyphozoa. For all but one gene, we report full-length homeobox plus flanking sequences. Four of the five genes show close relationship to previously reported Cnox-1 genes from Hydrozoa and Anthozoa. One gene, Scox-2, is an unambiguous homologue of Cnox-2 genes known from Hydrozoa, Anthozoa, and also Placozoa. Based on sequence similarity and phylogenetic analyses of the homeobox and homeodomain sequences of known Hox genes from cnidarians, we suggest the presence of at least five distinct Hox gene families in this phylum, and conclude that the last common ancestor of the Recent cnidarian classes likely possessed a set of Hox genes representing three different families, the Cnox-1, Cnox-2, and Cnox-5 families. The data presented are consistent with the idea that multiple duplication events of genes have occurred within one family at the expense of conservation of the original set of genes, which represent the three ancestral Hox gene families.  相似文献   
43.
44.
45.
Metazoa are one of the great monophyletic groups of organisms. They comprise several major groups of organisms readily recognizable based on their anatomy. These major groups include the Bilateria (animals with bilateral symmetry), Cnidaria (jellyfish, corals and other closely related animals), Porifera (sponges), Ctenophores (comb jellies) and a phylum currently made up of a single species, the Placozoa. Attempts to systematize the relationships of these major groups as well as to determine relationships within the groups have been made for nearly two centuries. Many of the attempts have led to frustration, because of a lack of resolution between and within groups. Other attempts have led to "a new animal phylogeny". Now, a study by Dunn et al., using the expresssed sequence tag (EST) approach to obtaining high-throughput large phylogenetic matrices, presents an "even newer" animal phylogeny. There are two major aspects of this study that should be of interest to the general biological community. First, the methods used by the authors to generate their phylogenetic hypotheses call for close examination. Second, the relationships of animal taxa in their resultant trees also prompt further discussion.  相似文献   
46.
"Hox cluster type" genes have sparked intriguing attempts to unite all metazoan animals by a shared pattern of expression and genomic organization of a specific set of regulatory genes. The basic idea, the zootype concept, claims the conservation of a specific set of "Hox cluster type genes" in all metazoan animals, i.e., in the basal diploblasts as well as in the derived triploblastic animals. Depending on the data used and the type of analysis performed, different opposing views have been taken on this idea. We review here the sum of data currently available in a total evidence analysis, which includes morphological and the most recent molecular data. This analysis highlights several problems with the idea of a simple "Hox cluster type" synapomorphy between the diploblastic and triploblastic animals and suggests that the "zootype differentiation" of the Hox cluster most likely is an invention of the triploblasts. The view presented is compatible with the idea that early Hox gene evolution started with a single proto-Hox (possibly a paraHox) gene. J. Exp. Zool. (Mol. Dev. Evol.) 291:169-174, 2001.  相似文献   
47.
The origin and evolution of ANTP superclass genes has raised controversial discussions. While recent evidence suggests that a true Hox cluster emerged after the cnidarian bilaterian split, the origin of the ANTP superclass as a whole remains unclear. Based on analyses of bilaterian genomes, it seems very likely that clustering has once been a characteristic of all ANTP homeobox genes and that their ancestors have emerged through several series of cis-duplications from the same genomic region. Since the diploblastic Cnidaria possess orthologs of some non-Hox ANTP genes, at least some steps of the expansion of this hypothetical homeobox gene array must have occurred in the last common ancestor of both lineages--but it is unknown to what extent. By screening the unassembled Nematostella genome, we have identified unambiguous orthologs to almost all non-Hox ANTP genes which are present in Bilateria--with the exception of En, Tlx and (possibly) Vax. Furthermore, Nematostella possesses ANTP genes that are missing in some bilaterian lineages, like the rough gene or NK7. In addition, several ANTP homeobox gene families have been independently duplicated in Nematostella. We conclude that the last cnidarian/bilaterian ancestor already harboured the almost full complement of non-Hox ANTP genes before the Hox system evolved.  相似文献   
48.
Across the animal kingdom, Hox genes are organized in clusters whose genomic organization reflects their central roles in patterning along the anterior/posterior (A/P) axis . While a cluster of Hox genes was present in the bilaterian common ancestor, the origins of this system remain unclear (cf. ). With new data for two representatives of the closest extant phylum to the Bilateria, the sea anemone Nematostella and the hydromedusa Eleutheria, we argue here that the Cnidaria predate the evolution of the Hox system. Although Hox-like genes are present in a range of cnidarians, many of these are paralogs and in neither Nematostella nor Eleutheria is an equivalent of the Hox cluster present. With the exception of independently duplicated genes, the cnidarian genes are unlinked and in several cases are flanked by non-Hox genes. Furthermore, the cnidarian genes are expressed in patterns that are inconsistent with the Hox paradigm. We conclude that the Cnidaria/Bilateria split occurred before a definitive Hox system developed. The spectacular variety in morphological and developmental characteristics shown by extant cnidarians demonstrates that there is no obligate link between the Hox system and morphological diversity in the animal kingdom and that a canonical Hox system is not mandatory for axial patterning.  相似文献   
49.
Changes in body morphology during growth and reproduction in the hydromedusa Eleutheria dichotoma are described in terms of variations in eight different characters: umbrella diameter, total surface area, tentacle area, umbrella area, tentacle knob diameter, number of embryos, and diameter and area of buds. Sexually (sex) and vegetatively (veg) reproducing medusae differ significantly in their body morphometrics. Statistically significant allometric relations exist between umbrella diameter and (1) central area (sex and veg); (2) tentacle area (veg); (3) total area (veg); (4) tentacle knob diameter (veg); (5) bud diameter; and (6) number of embryos. A significant correlation between umbrella diameter and area is also found in undetached buds. During sexual reproduction, umbrella area shows positive allometry and loses its correlations to total area, tentacle area, and tentacle knob diameter. Linear and nonlinear bivariate allometric coefficients allow estimation of total body size from only one or two easily measurable attributes, e.g., umbrella and tentacle knob diameter. Curve fitting by the classic allometric equation (y = bxc) is only negligibly worse than that obtained with a “full” equation (y = a + c), and statistical confidence is better. Chemical analyses for carbon and nitrogen content allow estimation of biomass from the projection area of the body surface. The relation factors are 1.06 μgC mm?2 (sex) and 1.14 μgC mm?2 (veg) for carbon and 0.293 μgN mm?2 (sex) and 0.287 μgN mm?2 (veg) for nitrogen. The C:N ratios are 3.6 and 4.0 for sexual and vegetative medusae, respectively. The use of allometric regression formulas to calculate surface areas and to relate these to carbon content provides quick estimations of body size in a microscopic animal.  相似文献   
50.
Recent identification of genes homologous to human p53 and Mdm2 in the basal phylum Placozoa raised the question whether the network undertakes the same functions in the most primitive metazoan organism as it does in more derived animals. Here, we describe inhibition experiments on p53/Mdm2 interaction in Trichoplax adhaerens by applying the inhibitors nutlin-3 and roscovitine. Both inhibitors had a strong impact on the animals’ survival by significantly increasing programmed cell death (cf. apoptosis, measured via terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay). Treatment with roscovitine decreased cell proliferation (visualized by means of bromodeoxyuridine incorporation), which is likely reducible to its function as cyclin-dependent kinase inhibitor. Obvious phenotypic abnormalities have been observed during long-term application of both inhibitors, and either treatment is highly lethal in T. adhaerens. The findings of this study suggest a conserved role of the p53/Mdm2 network for programmed cell death since the origin of the Metazoa and advocate the deployment of Placozoa as a model for p53, apoptosis, and possibly cancer research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号