首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   26篇
  2016年   7篇
  2015年   7篇
  2014年   8篇
  2013年   7篇
  2012年   4篇
  2011年   5篇
  2010年   7篇
  2009年   6篇
  2008年   12篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2004年   9篇
  2003年   9篇
  2001年   4篇
  2000年   6篇
  1999年   4篇
  1998年   3篇
  1991年   4篇
  1990年   7篇
  1987年   3篇
  1985年   5篇
  1984年   5篇
  1983年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   5篇
  1969年   2篇
  1968年   2篇
  1963年   3篇
  1961年   3篇
  1960年   2篇
  1953年   3篇
  1943年   6篇
  1942年   3篇
  1941年   5篇
  1940年   4篇
  1939年   4篇
  1938年   4篇
  1937年   6篇
  1936年   8篇
  1935年   6篇
  1934年   6篇
  1933年   2篇
  1932年   3篇
  1930年   5篇
排序方式: 共有274条查询结果,搜索用时 93 毫秒
91.
Age-related macular degeneration (AMD) is the leading cause of severe vision impairment in Western populations over 55 years. A growing number of gene variants have been identified which are strongly associated with an altered risk to develop AMD. Nevertheless, gene-based biomarkers which could be dysregulated at defined stages of AMD may point toward key processes in disease mechanism and thus may support efforts to design novel treatment regimens for this blinding disorder. Circulating microRNAs (cmiRNAs) which are carried by nanosized exosomes or microvesicles in blood plasma or serum, have been recognized as valuable indicators for various age-related diseases. We therefore aimed to elucidate the role of cmiRNAs in AMD by genome-wide miRNA expression profiling and replication analyses in 147 controls and 129 neovascular AMD patients. We identified three microRNAs differentially secreted in neovascular (NV) AMD (hsa-mir-301-3p, pcorrected = 5.6*10−5, hsa-mir-361-5p, pcorrected = 8.0*10−4 and hsa-mir-424-5p, pcorrected = 9.6*10−3). A combined profile of the three miRNAs revealed an area under the curve (AUC) value of 0.727 and was highly associated with NV AMD (p = 1.2*10−8). To evaluate subtype-specificity, an additional 59 AMD cases with pure unilateral or bilateral geographic atrophy (GA) were analyzed for microRNAs hsa-mir-301-3p, hsa-mir-361-5p, and hsa-mir-424-5p. While we found no significant differences between GA AMD and controls neither individually nor for a combined microRNAs profile, hsa-mir-424-5p levels remained significantly higher in GA AMD when compared to NV (pcorrected<0.005). Pathway enrichment analysis on genes predicted to be regulated by microRNAs hsa-mir-301-3p, hsa-mir-361-5p, and hsa-mir-424-5p, suggests canonical TGFβ, mTOR and related pathways to be involved in NV AMD. In addition, knockdown of hsa-mir-361-5p resulted in increased neovascularization in an in vitro angiogenesis assay.  相似文献   
92.
Lee JY  Schick M 《Biophysical journal》2008,94(5):1699-1706
The fusion of small vesicles, either with a planar bilayer or with one another, is studied using a microscopic model in which the bilayers are composed of hexagonal- and lamellar-forming amphiphiles. The free energy of the system is obtained within the self-consistent field approximation. We find that the free energy barrier to form the initial stalk is hardly affected by the radius of the vesicle, but that the barrier to expand the hemifusion diaphragm and form a fusion pore decreases rapidly as the radius decreases. As a consequence, once the initial barrier to stalk formation is overcome, one which we estimate at 13 kBT for biological membranes, fusion involving small vesicles should proceed with little or no further input of energy.  相似文献   
93.
94.
The recently identified adipocytokine adiponectin has been shown to improve insulin action and decrease triglyceride content in skeletal muscle (by stimulating lipid oxidation) in mice. In the present study, we tested the hypothesis that high serum concentrations of adiponectin are associated with lower intramyocellular (IMCL) fat content by promoting lipid oxidation in humans. IMCL-content in predominantly non-oxidative tibialis anterior muscle and oxidative soleus was determined by proton magnetic resonance spectroscopy in a cross- sectional study involving 63 healthy volunteers. In a second set of experiments, changes in IMCL in both muscles were measured after a three days dietary lipid challenge (n = 18) and after intravenous lipid challenge (n = 12) with suppressed lipid oxidation under hyperinsulinemia. Adiponectin serum concentrations were found to be negatively correlated with IMCL in the oxidative soleus muscle (IMCL [sol]) (r = - 0.46, p < 0.001) independent of measures of obesity, but not with IMCL in the non-oxidative tibialis anterior muscle (IMCL [tib]) (p = 0.40). Adiponectin serum concentrations were negatively correlated with the observed increase in IMCL load after dietary lipid challenge in the tibialis (r = 0.53, p = 0.03) but not in the soleus muscle. During suppression of lipid oxidation by hyperinsulinemia, no effect of adiponectin on IMCL was observed in either soleus or tibialis muscle. Overall, the presented findings are consistent with the hypothesis that adiponectin promotes lipid oxidation in humans resulting in lower intracellular lipid content in human muscle. These results are consistent with animal data, where adiponectin could be shown to enhance lipid oxidation and reduce muscle triglycerides.  相似文献   
95.
The Wistar Furth (WF) rat has a hereditary defect in platelet formation that resembles gray platelet syndrome of man with a large mean platelet volume and platelet alpha granule deficiency. The alpha granule abnormality is suggestive of a defect in granule packaging and/or stability. Proteoglycans are hypothesized to play a role in granule packaging. Therefore, we have analyzed the structure of the platelet proteoglycan, serglycin, in platelets of WF and normal Wistar rats. Normal and Wistar Furth rats were injected with 35S-sulfate to label platelet proteoglycans via synthesis by the megakaryocytes, and platelets were isolated 3 days later. We found that WF rat platelets have only one-third of the normal proteoglycan mass per unit platelet volume, and the proteoglycans are smaller in hydrodynamic size with shorter glycosaminoglycan chains than those of Wistar rats. However, WF rat platelet proteoglycans showed no defect in binding to collagen on affinity coelectrophoresis gels. We conclude that the structure of WF rat platelet proteoglycans is abnormal, and speculate that this abnormality may contribute to abnormal packaging of the alpha granule contents. Leakage of alpha granule contents into the marrow by platelets and megakaryocytes could perturb the marrow matrix, and promote the development of myelofibrosis noted in gray platelet syndrome. J. Cell. Physiol. 172:87–93, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
96.
97.
It has recently been reported that polymer actin made from monomer containing ATP (ATP-actin) differed in EM appearance and rheological characteristics from polymer made from ADP-containing monomers (ADP-actin). Further, it was postulated that the ATP-actin polymer was more rigid due to storage of the energy released by ATP hydrolysis during polymerization (Janmey et al. 1990. Nature 347:95-99). Electron micrographs of our preparations of ADP-actin and ATP-actin polymers show no major differences in appearance of the filaments. Moreover, the dynamic viscosity parameters G' and G" measured for ATP-actin and ADP-actin polymers are very different from those reported by Janmey et al., in absolute value, in relative differences, and in frequency dependence. We suggest that the relatively small differences observed between ATP-actin and ADP-actin polymer rheological parameters could be due to small differences either in flexibility or, more probably, in filament lengths. We have measured nucleotide exchange on ATP-actin and ADP-actin polymers by incorporation of alpha-32P-ATP and found it to be very slow, in agreement with earlier literature reports, and in contradiction to the faster exchange rates reported by Janmey et al. This exchange rate is much too slow to cause "reversal" of ADP-actin polymer ATP-actin polymer as reported by Janmey et al. Thus our results do not support the notion that the energy of actin-bound ATP hydrolysis is trapped in and significantly modifies the actin polymer structure.  相似文献   
98.
A murine hybridoma cell line producing a monoclonal antibody against penicillin-G-amidase and a murine transfectoma cell line secreting a monovalent chimeric human/mouse Fab-antibody fragment were cultivated in three different media (serum-containing, low protein serum-free, and iron-rich protein-free) in flask cultures, stirred reactors and a fixed bed reactor. In static batch cultures in flasks both cell lines showed similar good growth in all three media.In suspension in a stirred reactor, the hybridoma cell line could be cultivated satisfactory only in serum-containing medium. In low protein serum-free medium, Pluronic F68 had to be added to protect the hybridoma cells against shear stress. But even with this supplement only batch, not chemostat mode was possible. In iron-rich protein-free medium the hybridoma cells grew also in continuous chemostat mode, but the stability of the culture was low. The transfectoma cell line did not grow in stirred reactors in any of the three media.Good results with both cell lines were obtained in fixed bed experiments, where the cells were immobilized in macroporous Siran®-carriers. The media, which were optimized in flask cultures, could be used without any further adaptation in the fixed bed reactor. Immobilization improved the stability and reliability of cultures of non-adherent animal cells in serum-free media tremendously compared to suspension cultures in stirred reactors. The volume-specific glucose uptake rate, an, indicator of the activity of the immobilized cells, was similar in all three media. Deviations in the metabolism of immobilized and suspended cells seem to be mainly due to low oxygen concentrations within the macroporous carriers, where the cells are supplied with oxygen only by diffusion.List of symbols c substrate or product concentration mmol l–1 - c0 substrate or product concentration in the feed mmol l–1 - cGlc glucose concentration mmol l–1 - cGln glutamine concentration mmol l–1 - cAmm ammonia concentration mmol l–1 - cLac lactate concentration mmol l–1 - cFAB concentration of Fab# 10 antibody fragment g l–1 - cMAb monoclonal antibody concentration mg l–1 - D dilution rate d–1 - q cell-specific substrate uptake or metabolite production rate mmol cell–1 h–1 - qGlc cell-specific glucose uptake rate mmol cell–1 h–1 - qGln cell-specific glutamine uptake rate mmol cell–1 h–1 - qMAb cell-specific MAb production rate mg cell–1 h–1 - q* volume-specific substrate uptake or metabolite production rate mmol l–1 h–1 - q*FB volume-specific substrate uptake or metabolite production rate related to the fixed bed volume mmol lFB –1 h–1 - q*FB,Glc volume-specific glucose uptake rate related to the fixed bed volume mmol lFB –1 h–1 - q*FB,Gln volume-specific glutamine uptake rate related to the fixed volume mmol lFB –1 h–1 - q*FB,MAb volume-specific MAb production rate related to the fixed volume mg lFB –1 h–1 - q*FB,02 volume-specific oxygen uptake rate related to the fixed bed volume mmol lFB –1 h–1 - t time h - U superficial flow velocity mm s–1 - V medium volume in the conditioning vessel of the fixed bed reactor l - VFB volume of the fixed bed l - xv viable cell concentration cells ml–1 - yAmm,Gln yield of Ammonia from glutamine - yLac,Glc yield of lactate from glucose - specific growth rate h–1 - d specific death rate h–1  相似文献   
99.
The amount of intramyocellular lipids in skeletal muscle was assessed by proton magnetic resonance spectroscopy during a voluntary fasting period of 120 h in four healthy lean volunteers. The aim of the study was to determine whether muscular lipid uptake in the presence of high plasma lipid levels, or lipid oxidation due to lacking glycogen as a source of energy in musculature, are the dominant effects on intramyocellular lipid levels under fasting conditions in various muscle types. Intramyocellular lipids were quantified in the tibialis anterior (mixed type I and type II fibers, predominantly type II) and the soleus muscle (predominantly type I fibers) before and after 24 h, 72 h, and 120 h of fasting. An extreme increase in intramyocellular lipids to levels of 369 % (median) was found in the tibialis anterior muscle compared to baseline value (intramyocellular lipid level prior to fasting, set to 100 %; p = 0.02). The soleus muscle with clearly higher baseline content of intramyocellular lipids (2 - 4-fold compared to tibialis anterior) revealed slightly delayed and less pronounced uptake of intramyocellular lipids during fasting to 152 % (median) after 120 h (p = 0.02). The absolute increment in intramyocellular lipids (in terms of ratios between lipid and creatine signals) was also higher in tibialis anterior than in soleus (not statistically significant). These findings indicate augmentation of the intramyocellular lipid pool during long-term elevation of plasma FFA in the presence of low plasma insulin concentrations in both muscles investigated. The rate of muscular lipid oxidation during fasting is clearly lower than the increased uptake of FFA by myocytes.  相似文献   
100.
A number of transmembrane proteins have been recently reported to be modified by the covalent addition of saturated fatty acids which may contribute to membrane targeting and specific protein-lipid interactions. Such modifications have not been reported in cell-associated heparan sulfate proteoglycans, although these macromolecules are known to be hydrophobic. Here, we report that a cell surface heparan sulfate proteoglycan is acylated with both myristate and palmitate, two long-chain saturated fatty acids. When colon carcinoma cells were labeled with [3H]myristic acid, a significant proportion of the label was shown to be specifically incorporated into the protein core of the proteoglycan. Characterization of fatty acyl moiety in the purified proteoglycan by reverse-phase high pressure liquid chromatography revealed that approximately 60% of the covalently bound fatty acids was myristate. We further show that this relatively rare 14-carbon fatty acid was bound to the protein core via a hydroxylamine- and alkali-resistant amide bond. The remaining 40% was the more common 16-carbon palmitate, which was bound via a hydroxylamine- and alkali-sensitive thioester bond. Palmitate appeared to be added post-translationally and derived in part from intracellular elongation of myristate, a process that occurred within the first two hours and was insensitive to inhibition of protein synthesis. Acylation of heparan sulfate proteoglycan represents a novel modification of this gene product and could play a role in a number of biological functions including specific interactions with membrane receptors and ligand stabilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号