首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   11篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   7篇
  2017年   4篇
  2016年   6篇
  2015年   7篇
  2014年   11篇
  2013年   13篇
  2012年   12篇
  2011年   7篇
  2010年   12篇
  2009年   7篇
  2008年   4篇
  2007年   3篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   8篇
  2000年   4篇
  1999年   5篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1967年   1篇
  1958年   1篇
排序方式: 共有176条查询结果,搜索用时 171 毫秒
151.
Phospholipid micelles have proven to be the versatile pharmaceutical nanocarrier of choice for the delivery of poorly soluble chemotherapeutics for cancer therapy using various treatment modalities. Phospholipid micelles are typically expected to increase the accumulation of the loaded drugs in tumour tissues by taking advantage of the enhanced permeability and retention effect and by ligand-mediated active targeting. Furthermore, by tailoring the composition of the micelles, it is possible to enhance the intracellular delivery of the cargo. This review highlights the important advancements in our laboratory with polyethyleneglycol phosphatidylethanolamine (PEG-PE)-based micellar drug delivery systems for improvement of the therapeutic efficacy of poorly soluble anticancer drugs.  相似文献   
152.
Factors II, V, VII and Xa have materialized as a key enzymes for the intervention of blood coagulation cascade and for the development of new anti thrombotic agents. The combined density functional quantum mechanical/molecular mechanical (QM/MM) approach has been used to access inhibition of prothrombin and thrombin production. The biological activities of coumarin derivatives as clotting factor inhibitors was quantitatively analyzed in terms of physicochemical parameters utilizing the principal component analysis. Structural requirements for maximal potency were derived from the results of a quantitative structure activity relationship analysis.  相似文献   
153.
Some copper(I) complexes of the type [Cu(L)(dppe)]X (1-4) [where L = (3-trifluoromethylphenyl)pyridine-2-ylmethylene-amine; dppe = 1,2-bis(diphenylphosphino)ethane; X = Cl, CN, ClO4 and BF4] have been synthesized by the condensation of 3-aminobenzotrifluoride with 2-pyridinecarboxaldehyde followed by the reaction with CuCl, CuCN, [Cu(MeCN)4]ClO4 and [Cu(MeCN)4]BF4 in presence of dppe. The complexes 1-4 were then characterized on the basis of elemental analysis, IR, UV-Vis and 1H NMR spectral studies. The representative complex of the series 4 has been characterized by single crystal X-ray diffraction which reveal that in complex the central copper(I) ion assumes the irregular pseudo-tetrahedral geometry. The catalytic activity of the complexes was tested and it was found that all the complexes worked as effective catalyst in the amination of aryl halide.  相似文献   
154.
Mannheimia (Pasteurella) haemolytica is the only pathogen that consistently causes severe bronchopneumonia and rapid death of bighorn sheep (BHS; Ovis canadensis) under experimental conditions. Paradoxically, Bibersteinia (Pasteurella) trehalosi and Pasteurella multocida have been isolated from BHS pneumonic lungs much more frequently than M. haemolytica. These observations suggest that there may be an interaction between these bacteria, and we hypothesized that B. trehalosi overgrows or otherwise inhibits the growth of M. haemolytica. Growth curves (monoculture) demonstrated that B. trehalosi has a shorter doubling time (∼10 min versus ∼27 min) and consistently achieves 3-log higher cell density (CFU/ml) compared to M. haemolytica. During coculture M. haemolytica growth was inhibited when B. trehalosi entered stationary phase (6 h) resulting in a final cell density for M. haemolytica that was 6 to 9 logs lower than expected with growth in the absence of B. trehalosi. Coculture supernatant failed to inhibit M. haemolytica growth on agar or in broth, indicating no obvious involvement of lytic phages, bacteriocins, or quorum-sensing systems. This observation was confirmed by limited growth inhibition of M. haemolytica when both pathogens were cultured in the same media but separated by a filter (0.4-μm pore size) that limited contact between the two bacterial populations. There was significant growth inhibition of M. haemolytica when the populations were separated by membranes with a pore size of 8 μm that allowed free contact. These observations demonstrate that B. trehalosi can both outgrow and inhibit M. haemolytica growth with the latter related to a proximity- or contact-dependent mechanism.The bighorn sheep (BHS; Ovis canadensis) population in North America has declined from an estimated two million at the beginning of the 19th century to fewer than 70,000 today (7, 30). The decline of BHS populations is presumably due to loss of habitat, competition for forage with domestic livestock, predation, and disease (9, 19). The most important disease that has limited the growth of BHS populations is pneumonia (13, 14, 19, 31). Bacteria associated with BHS pneumonia are members of the genera Mannheimia and Pasteurella, particularly, the species Mannheimia (Pasteurella) haemolytica, Bibersteinia (Pasteurella) trehalosi, and Pasteurella multocida (6-9, 15, 20, 25, 31). Several independent studies have revealed that M. haemolytica is a major cause of BHS pneumonia. In fact, M. haemolytica is the only pathogen that has been shown to consistently cause severe bronchopneumonia and rapid death of BHS under experimental conditions (10, 14, 23). B. trehalosi has been isolated more often than M. haemolytica from the upper respiratory tract of healthy BHS (10, 12-14, 26, 31). Large numbers of B. trehalosi have also been isolated from the pneumonic lungs of BHS experimentally inoculated with M. haemolytica alone (10). Furthermore, our recent studies with M. haemolytica wild type and leukotoxin deletion mutants in BHS have revealed that the leukotoxin deletion mutant does not cause the death of BHS but instead induces only mild lung lesions, confirming the finding in cattle that leukotoxin is the most important virulence factor of M. haemolytica (10, 24, 29). Our recently concluded BHS inoculation study revealed that only leukotoxin producing strains of B. trehalosi can cause pneumonia, indicating that leukotoxin is the most important virulence determinant in B. trehalosi as well. More than 85% of the B. trehalosi isolates obtained from BHS, however, do not produce leukotoxin (28, 32). Therefore, this observation, together with the results from the animal experiments, indicates that B. trehalosi is unlikely to be the major cause of pneumonia outbreaks in BHS.These observations prompted us to hypothesize that B. trehalosi outgrows or otherwise inhibits the growth of M. haemolytica. The objectives of the present study were to (i) characterize in vitro growth kinetics of M. haemolytica and B. trehalosi; (ii) develop M. haemolytica-specific and B. trehalosi-specific PCR assays to detect either species in mixed cultures; and (iii) determine whether B. trehalosi inhibits the growth of M. haemolytica in vitro and, if it does, characterize the mechanism of inhibition.  相似文献   
155.
156.
157.
OEIS is an extremely rare constellation of malformations, which includes omphalocele, exstrophy of cloaca, imperforate anus, and spinal defect. We report here autopsy findings in a case of OEIS complex, which apart from the major anomalies of the complex had bilateral club foot that is, congenital talipes equinovarus, right hydroureter, and body stalk anomaly. The umbilical cord was absent, and the umbilical vessels were embedded in an amniotic sheet, which connected the skin margin of the anterior body wall defect to the placenta, this feature being the hallmark of limb body wall complex (LBWC). This case further supports the view that OEIS and LBWC represent a continuous spectrum of abnormalities rather than separate conditions and may share a common etiology and pathogenetic mechanism as proposed by some authors.  相似文献   
158.
Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6−10 cells, traversing a network of large germ line–derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues.  相似文献   
159.
160.

Background  

Inflammation and inflammatory biomarkers play an important role in atherosclerosis and cardiovascular disease. Little information is available, however, on time course of serum markers of inflammation after stroke.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号